
Good practice guidelines for long-term 
ecoacoustic monitoring in the UK

With a particular focus on terrestrial biodiversity
at the human-audible frequency range



Page 2

Foreword
The popularity of ecoacoustics as an innovative environmental discipline has enjoyed immense 
growth within the last five years, to a point where it is now becoming difficult to keep up with 
all the new research papers published.  What soon becomes apparent, however, is a lack of 
consensus on which recording and analysis protocols to follow; partly a result of the differing 
requirements of each research project, but also an historical artefact of the tropical origins 
of much of this research.  As more acoustic long-term monitoring schemes start to become 
established throughout the UK and neighbouring countries there arises a need to adopt a more 
common set of protocols, more akin to our temperate conditions, to allow for valid future analysis 
and comparison.  To that end a group of ecoacoustic researchers and practitioners met in June 
2022 to discuss the formulation of such a set.  This work was then taken forward by the authors to 
generate the guidelines contained herein.

Digital technologies now allow us the ability to record our acoustic environments widely, with 
relative ease; and to subject the resulting recordings to an ever-expanding range of analytical 
methods.  This opens up the potential to create new approaches to gauging biodiversity and 
assessing the changing fortunes of species and their habitats.  To maximise these benefits it 
is vitally important that we secure now, and into the future, data which will  illustrate baseline 
assessments and highlight change.  These guidelines therefore provide welcome instruction and 
conformity, particularly for those new to ecoacoustics.  Please use them, as appropriate, to help 
guide your own contributions to the growing awareness, and use, of sound as an environmental 
metric within the UK and Europe.
Bob Ashington (Natural England)
 

Figure I. Urban nesting Kittiwakes Rissa 
tridactyla. Passive acoustic monitoring 
has been used to effectively monitor 
large seabird colonies - could these noisy 
birds be a good candidate for long-term 
ecoacoustic monitoring?

Aims
Our good practice guidelines represent the opinions of an experienced team of researchers and 
consultants who have come together to synthesise the latest academic research and expert 
judgement on field-proven ways to apply ecoacoustic survey techniques, especially tailored 
to long-term biodiversity monitoring. The guidelines are focussed on the use of ecoacoustic 
monitoring of audible sounds within terrestrial, temperate ecosystems typical of the UK and 
elsewhere in Europe, but we hope they will have wider application. We explicitly do not consider 
biodiversity that sonifies in the ultrasonic, or marine acoustics, as well-developed monitoring 
protocols already exist for this purpose - although naturally there is a degree of overlap. 
The co-production of these guidelines follows a UK Acoustics Network (UKAN+) ecoacoustics 
symposium held at Manchester Metropolitan University, Manchester, UK on 15-16th June 
2022, and attended by over 160 people both online and in-person. The guidelines are intended 
to reflect the discussions and emerging conclusions from that event - as well as applicable 
information and research generated around the world on the topic.
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Executive Summary
Passive acoustic monitoring has great potential as a cost-effective method for long-term 
biodiversity monitoring. However, to maximise its efficacy, standardisation of survey protocols is 
necessary to ensure data are comparable and permit reliable inferences.

The aim of these guidelines is to outline a basic long-term acoustic monitoring protocol that 
can be adapted to suit a range of projects according to specific objectives and size. Here we 
summarise some basic recommendations for audible-range terrestrial ecosystem monitoring - 
more detail can be found in the following chapters. A ‘Quick start guide’ giving further rationale 
for these recommendations can be found in Appendix 1.
 

Equipment and settings
Recording devices should be capable of autonomous recording for extended periods 
(Section 2.2) to minimise disturbance of the study site and use microphones with a flat 
frequency response across human-audible frequencies (Section 2.1). All devices in 
a study should ideally be the same model (Section 2.5), and with a consistent gain 
setting across all recorders (Section 2.1). A non-exhaustive list of available devices is 
available in Table 2.1.

We provide a recommended quick-start protocol for those new to ecoacoustics projects 
in Appendix 1.  This recommends the follow settings and programme:

• Sounds should be recorded in .wav format, at a bit depth of 16-bits, and with a 
48kHz sampling rate.

• Sounds should be recorded as 1 minute length files, with one recording every five 
minutes (1 minute on - 4 minutes off) through the full 24 hour daily cycle.

• Deployments should last for a minimum of one week, and take place four times per 
year, one in each season.

• Recording devices should be placed at least 250 metres apart, with their locations 
selected in relation to habitat type or other features of interest.

Consistent metadata should be collected for each deployment, with each term 
matching an equivalent in Audobon Core (Section 3.4).
 

Analysis
We recommend including both targeted and whole soundscape analysis.

Targeted analysis

Birds are readily detectable using Passive Acoustic Monitoring, are a relatively 
speciose group which  are well-studied both in terms of their suitability for 
passive acoustic monitoring and UK ecology; we recommend including 
targeted bird surveys, although other taxa may be preferential in different 
circumstances (see Chapter 5).
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Targeted studies should be conducted using recorders set at least 250m 
apart over a suitable area (Section 3.2). Sampling should be conducted across 
the breeding season and for at least one week in each of summer, autumn, 
and winter (Section 3.1). At least one hour of data should be sampled for 
analysis, with recordings of one minute duration and spaced at least 5 
minutes apart during deployment, which should cover the diel period from 
30 minutes before sunrise until four hours after sunrise (Section 3.1).

Detection and identification of the species present should be conducted 
either manually or using a well-tested automated identification algorithm 
such as BirdNET (Section 5.1). At least some traditional bird surveys should be 
conducted in parallel to confirm the efficacy of the monitoring protocol.

 

Soundscape analysis

Soundscape analysis can give insights into environmental sound including 
anthropogenic noise pollution, and the acoustic community diversity and their 
interactions (see Chapter 6).

Sampling for soundscape monitoring should comprise at least one month 
of deployment of independent recorders (i.e., > 250m apart) during each 
of the four seasons, consistently repeated across years, and comprise one 
minute of recording for every five minutes across the diel cycle (Section 
3.1). Analyses should be undertaken with acoustic indices whose properties 
are well understood (for example the Acoustic Complexity Index or the 
Bioacoustic Index), and at frequency ranges suitable for the environment 
(Section 6.2). At least some ground-truthing (such as the targeted bird surveys 
above) should be conducted.

This basic protocol can be adapted to suit the constraints and objectives 
of your monitoring project. The discussion in the following chapters aims 
to provide you with the requisite knowledge and insight to make sensible 
decisions to this end. Equally, it would be straightforward to extend this 
monitoring protocol to include species vocalising in ultrasonic ranges such 
as bats and small mammals, using the pre-existing guidance documents 
highlighted in Chapter 1.
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Figure 1.1. Passive Acoustic Monitoring offers the opportunity to monitor rewilding 
projects such as this one at Sunart Fields, Derbyshire. Credit Rachel Evatt



Glossary
Note that some of these terms have a more general meaning (e.g. ‘array’, ‘aliasing’) - here we define 
them in the context they are used in these guidelines.

Terminology Definition 

acoustic indices Statistical summaries of sound energy. Many are designed for use as proxies for traditional ecological metrics like species 
richness (see Chapter 6).

aliasing When the frequency of the original sound signal is misidentified during digital representation due to insufficient 
sampling rate. 

anthropophony Sound produced from man-made sources, e.g. traffic noise (see section 4.4).
Note: sometimes shortened to ‘anthrophony’ elsewhere, or described as technophony

array Multiple microphones recording simultaneously at a monitoring location (see section 3.2).

attenuation The energy loss of a sound wave as it travels through air, water, soil or other media (see section 3.2.1.).

audible sounds Sounds which have frequencies between 20Hz and 20 kHz

autonomous 
recording unit 
(ARU)

Audio recording devices which can be programmed to record at set times and left unattended in the field (due to 
autonomous powering and data storage or transmission) for passive acoustic monitoring (see Chapter 2).

bioacoustics The study of the production, transmission and detection of sounds by animals.

biophony Sound produced from biological sources, e.g. bird song.

bit depth The number of bits (0s or 1s) used to store each sample: a higher number increases the amplitude resolution and 
decreases the theoretical signal to noise ratio (see section 2.1.1.). 

clipping Sound signal distortion which occurs when an amplifier receives a signal beyond its maximum sound pressure level. The 
top and bottom of soundwaves are cut off or ‘clipped’ (see section 2.1.2.).

detection distance The maximum distance at which a recorder can detect target sound signals. This distance varies depending on the 
properties (amplitude/ frequency/ etc.) of the emitted sound (see section 3.2.1.).

diel cycle The full 24 hour period.

dynamic range The sound pressure level between the highest and lowest amplitude levels that a microphone can handle  (see section 
2.1.2.).

ecoacoustics A fundamental and applied science that investigates the ecological role of sound across levels of ecological organisation. 

false-colour 
spectrogram

Spectrograms which use the results of three acoustic indices as the values in the Red-Green-Blue channels to colourise 
the spectrogram (see section 4.3.).

fast Fourier 
transform 
(commonly 
abbreviated to 
FFT)

A signal processing method used to transform audio data from the time-amplitude domain to the time-frequency 
domain. Within a given time window, the frequency components of the signal and their relative amplitudes are 
calculated. Applied over the recording as a sliding window, a spectrogram is generated enabling visual sound 
identification. 

frequency 
response

The variation in sensitivity of a microphone to different frequencies within the range that it can detect  (see section 
2.1.2.).

gain The amount of amplification the recorder applies to the incoming audio signal before recording it (see section 2.1.1.).

geophony Sound produced from non-living environmental sources, e.g. wind, water

infrasonic Sounds with frequencies below the lower limit of human hearing (< 20Hz).

machine learning Computational models developed using algorithms and statistical models that develop through data-based inference, 
rather than following explicit sets of rules as in traditional programming (see sections 5.1.5. and 6.5.

passive acoustic 
monitoring (PAM) Automated recording of sounds for ecological monitoring, without the need for human presence. 

recording format The file format in which an ARU is able to store sound recordings (e.g. WAV, FLAC, MP3)  (see section 2.1.1.). 

recording period
Periods of time during deployment of an ARU when the recorder is active, normally arranged for when target ecological 
activity takes place. An appropriate sampling schedule must be chosen to record a representative sample of acoustic 
activity from these periods (see section 3.1.2.).
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Terminology Definition 
recording time How long an ARU can record continuously  (see section 2.1.1.).

sampling rate The number of samples of audio taken per second by a recording device. A sampling rate of 48,000 Hz represents 48,000 
samples per second and determines the frequency resolution of the recording  (see section 2.1.1.).

sampling schedule The time that an ARU is set to record during deployment. For example, a device may be set to record for 5 minutes out of 
every hour across the targeted recording period (see section 3.1.3.).

signal-to-noise 
ratio

Decibel (dB) measure of how clearly the loudest sounds (signals) stand out from quieter background sounds (noise) 
made by the electronics in the microphone and recorder itself  (see section 2.1.2.).

soniferous species Species which deliberately produce sounds e.g. song, calls, stridulation, drumming, etc.

sound pressure 
level (SPL)

The pressure deviation from ambient levels caused by a sound wave. Measured in decibels (dB SPL) which is the signal 
amplitude proportional to the quietest pressure waves humans can hear (2x10-5 Pa).  (see section 2.1.2.).

soundscape The whole acoustic environment resulting from the combination of all audible sounds in an ecosystem (see Chapter 6).

spectrogram Visual representations of the spectrum of frequencies in a sound file, with frequency on the y-axis, time on the x-axis and 
amplitude expressed through intensity of colour (see Figure 2.3).

ultrasonic Sounds with a frequency above the upper limit of human hearing (i.e. sounds above 20,000 Hz).

waveform The waveform of a signal (sound) is a graph showing amplitude versus time (Figure 2.3).

zero-crossing-rate The number of times an audio signal crosses zero (negative to positive or vice versa), this serves as a primitive proxy for 
basic pitch detection.

Page 8



Chapter 1: Introduction
1.1 Biodiversity monitoring
The entwined global biodiversity and climate crises and their effect on associated 
ecosystem services pose a serious threat to planetary health as well as human 
health, well-being and the global economy1. This is particularly evident in the United 
Kingdom, one of the most nature-depleted countries on the planet2. Given this 
context, monitoring biodiversity is vital to provide information on the status of wildlife 
populations, invasive species, changes in habitat quality and resilience of ecosystem 
functions. In turn, effective biodiversity monitoring is a requirement for evidence-led 
conservation policy and the adoption of effective adaptive management protocols.

The UK government and civil society have responded to the threat of biodiversity 
loss with a range of measures aimed at conserving and increasing biodiversity. These 
currently include the Biodiversity Net Gain3 approach to development, an increased 
focus on agri-environment schemes, and a rapid increase in rewilding projects across the 
country4 – alongside the continuation of more traditional conservation actions. Given 
the recent commitments at COP 155 to restore 30% of degraded land and protect 30% of 
the most important areas for biodiversity globally - it is likely we will see an increase and 
diversification of these projects in the coming years.

These large-scale projects and schemes require biodiversity monitoring effective  
over broad spatial and temporal scales. Many of the UK government responses are 
born from the credo of the Lawton report6 -  ‘More, bigger, better, and joined up’ – 
meaning that they are intended to foster change at large spatial scales. There is also an 
increased understanding that ecological change, both positive and negative, occurs 
over long periods and not just as an immediate response to one-off interventions7. In 
consequence, ecosystem monitoring is in increased (and long-term) demand, but is not 
always feasible with traditional ‘boots on the ground’ survey methods.

Fortunately, a range of new, technology-driven, approaches are being developed in 
wildlife monitoring globally8,9. These include the use of drones, camera traps, and the 
focus of these guidelines, autonomous sound recording units (ARUs),which can be 
deployed in the field to collect sound recordings without regular intervention. These 
new technologies offer the capacity to accumulate large quantities of environmental 
data, whilst also presenting novel practical and analytical challenges10,11. These 
challenges are exacerbated by lack of standards. These guidelines therefore set out 
current good practice for the use of ARUs for long-term biodiversity monitoring.

1.2. Why use ecoacoustic monitoring?
Ecoacoustics is an interdisciplinary science that investigates natural and anthropogenic 
sounds and their relationship with the environment.  An increasing range of ecoacoustic 
methods support the use of sound to study the environment. This  is a rapidly expanding 
approach for the collection and analysis of environmental data, which offers potential 
for valuable contributions to long-term biodiversity monitoring and subsequent 
management9. Recent developments in more affordable ARUs and sophisticated 
and accessible audio data analysis tools have widened the taxonomic, temporal, 
and geographical scope of acoustic studies, as well as the research questions being 
investigated12,13. Prior to these developments, terrestrial acoustic research focussed 
primarily on recording bats with hand-held devices, with either no recording capability, 
or with subsequent manual acoustic analysis of the recordings. Geographically, passive 
acoustic studies were largely restricted to Europe and North America and limited in 
temporal scope. However, the passive acoustic research landscape is now changing 
dramatically. 
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The expanding availability of the ecoacoustic toolkit is reflected in a rising number of 
review papers on the use of ecoacoustics – highly useful resources for those new to 
the field. These include general reviews on the discipline of ecoacoustics14,15, together 
with more targeted reviews on animal communication16, avian bioacoustics17,18,19, use 
in freshwater habitats20,21, acoustic data processing22, acoustic indices23, localisation of 
individuals24, and estimation of population densities25,26.

Ecoacoustics is underpinned by the use of ARUs to record soundscapes in the absence 
of a human observer27 thus allowing Passive Acoustic Monitoring (PAM). PAM has several 
advantages over more traditional survey methods. The biggest benefit of PAM is the 
capacity to function for long periods without frequent human intervention, allowing 
studies to be conducted over broad spatiotemporal scales15,19. This allows surveys to 
be conducted in places where regular access is logistically challenging, minimises 
human impact on the study site, eases surveying at times that are unfavourable for 
traditional surveys, and enables the collection of large quantities of data. Furthermore, 
pre-programmed recording schedules allow for a variety of sampling regimes, reducing 
power consumption and further extending the duration over which ARUs can record 
without human intervention - in a flexible, predictable, and replicable manner. This 
reduces the cost of data collection in comparison to traditional survey techniques19, and 
facilitates targeting of nocturnal, rare, or hard to detect species that may only vocalise at 
specific times28. ARUs offer the capacity to record continuously and at broad frequency 
spectra, meaning that PAM can be used to simultaneously monitor all soniferous species 
in an area, increasing the cost-effectiveness of multi-taxa surveys and facilitating surveys 
of understudied taxonomic groups such as insects15,29.

Figure 1.2. A typical deployment of an autonomous recording unit in UK woodland.
© Copyright Carlos Abrahams.
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Practical obstacles slowing uptake of PAM have diminished in recent years. The cost of 
recording units has fallen greatly, with some costing as little as £65 (AudioMoth) and 
a general trend towards miniaturisation assisting with logistical challenges in field 
placement22,30,31,32,33. Similarly, memory cards for ARU devices have increased in capacity 
while their costs, and that of long-term storage, are falling. Meanwhile, cloud computing 
increasingly represents a long-term, relatively affordable solution for both data storage 
and computational capacity for analyses34,35. 

PAM offers several other advantages in both data collection and analysis over traditional 
in situ methods. For example, it makes standardisation of surveys easier, avoiding effects 
from observer presence36 and observer bias in the field37. Critically, the collection of raw 
audio data can provide a permanent record, which has at least six benefits: 

• They are permanent records of the surveys conducted, as well as the results 
encountered, something that may be of particular importance for those wishing to 
use PAM commercially. 

• Due to the permanent data record, it is possible to verify and correct bias introduced 
at the analysis stage19. 

• It limits the requirement for specialist observers in the field, as a single expert can 
independently analyse a large number of surveys afterwards38,39,40. 

• Data are available for reanalysis in case of technological advancements, or for 
application to new questions38,41. 

• The data  can be used as tools to engage local stakeholders or engage wider 
audiences in conservation, for example around restoration and rewilding projects42. 

• Recordings represent an acoustic ‘time capsule’, providing historic records that may 
provide critical evidence of changing soundscapes in the decades to come43. 

Alongside these clear benefits, there are some challenges to the effective use of PAM: 

• Acoustic methods can only record soniferous species when they are producing sound. 
Silent or quiet individuals or species will go undetected. 

• Recording hardware is still being rapidly developed, and the microphone, circuitry 
and firmware varies between manufacturers and models, with consequent effects on 
the audio data collected. 

• The storage of data for large projects can be problematic, and there are few 
established repositories in which to archive recordings. 

• There are also current challenges in the analysis of ecoacoustic data and the 
interpretation of outputs. 

However, with the exponential growth of this interdisciplinary field in recent years, 
combined with the reducing costs of equipment, data storage, computational power, 
and ever increasing commitments to address the biodiversity crisis, we believe that 
many of these challenges will be ameliorated in the near term. 
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Item Reason

PAM vs 
traditional 
methods – 
effect size* 

Confidence that PAM 
has an advantage/
disadvantage

Soundscape 
analysis Can only be undertaken with recorded acoustics +++ High

Temporal scaling ARUs can be deployed to record for long periods at any time of the 
day

+++ High

Data archiving Acoustic data and analysis processes can be stored as a permanent 
record

+++ High

Standardisation Sampling and analysis are easier to standardise with identical ARUs 
and computational analysis methods

+++ Medium

Multi-taxa surveys The same acoustic data can be analysed for multiple taxa +++ Medium-High

Reanalysing data Surveys can be played back to find overlooked species, or re-
analysed using new methods

+++ High

Phenology studies Long-duration recordings facilitate long-term studies +++ High

Avoiding 
disturbance Human presence not required during survey periods +++ High

Species richness PAM more effective overall at detecting higher species richness +++ Medium-High

Reliance on expert 
labour

Analysis can be undertaken away from busy survey periods, for 
instance outside breeding seasons when experts may have more 
availability

++ High

Spatial scaling ARUs can be deployed at multiple sites to record simultaneously ++ Medium

Vocal activity rate Relatively straightforward to measure with PAM ++ Medium

Localisation/ Non-
invasive tracking

Complex, but could be done over long periods and in near real-
time.

++ Low

Detection of rare 
species

Increased likelihood of detection with longer recordings, but 
impractical to actively search

+ Medium

Species occupancy Easier to collect replicate samples + Medium

Material and 
labour costs

Dependent on number of sites/visits and distances to travel. 
Equipment is often more expensive, but requires fewer site visits

= Low

Weather Recordings impacted by wind and rain, but long deployments can 
allow sampling to avoid bad weather

= High

Density Can be estimated using PAM, but likely simpler in most cases to 
estimate density using traditional methods

- Low

Behaviour Lack of visual observations can make interpretation difficult -- Medium

Number of 
detections Not always clear how many calling individuals are present -- Medium

Mobility Restricted to stationary survey methods --- High

Survey area Difficult to estimate the exact area covered --- High

Visual detections No visual data – impossible to detect some species or behaviours --- High

*(+++ indicates the largest advantage of PAM over traditional survey methods; - - - indicates the greatest disadvantage compared to traditional 
survey methods; = indicates there is no difference between PAM and traditional surveys methods.)

Table 1.1. Benefits and challenges of passive acoustic monitoring and point counts for 
biodiversity monitoring. Adapted from Darras et al., 201919.

Page 12



1.3 Purpose of these guidelines
Whilst these guidelines are likely to be of interest to anyone working in ecoacoustics, 
they are explicitly targeted at those wishing to use PAM for long-term acoustic 
monitoring of European biodiversity, with a particular focus on the UK and audible 
sounds. The objective is to provide a clear set of good-practice recommendations, 
drawing from academic literature and the authors’ experience, for those with the 
greatest opportunity to apply PAM to biodiversity management projects – including 
land-managers, ecological consultants, conservation practitioners, and rewilders. 

There are some ambiguities surrounding both what is meant by ‘long-term’ monitoring, 
and by the broad term ‘biodiversity’. Whilst we do not wish to limit this document to use 
only at specific timescales, by ‘long-term’ we have in mind the sort of periods over which 
an agri-environment scheme may take effect (approx. 3-10 years), a large construction 
project that may need to be monitored for ecological impact (approx. 10 years), or the 
duration of a rewilding or net-gain project (perhaps 30+ years). Long-term monitoring 
can be conducted in two ways – either continuous or periodic. PAM can lend itself to 
both approaches. As the choice of intensity and duration of survey periods is likely to be 
highly dependent on local and project context, we do not attempt to prescribe a ‘best’ 
method, but highlight a range of tools and examples that are suitable, as evidenced by 
the scientific literature.

It is also necessary to define more narrowly what we mean by ‘biodiversity’. These 
guidelines are aimed at facilitating the monitoring of terrestrial biodiversity that 
produces sound at or near human-audible frequencies (approximately 20 Hz - 20 kHz) - 
an area where good-practice guidelines are currently lacking. Aquatic biodiversity and 
species vocalising in ultrasound, such as bats, fall outside the remit of this guidance, in 
large part because very good guidelines already exist for acoustic monitoring of these 
taxa44,45. In practice, this means the focus is primarily on birds and many mammals, 
amphibians, and insects that produce sound at frequencies audible to humans. 
However, some of the information here will still be useful to those wishing to monitor 
aquatic and ultrasonic species, and these guidelines will apply to those wishing to 
simultaneously monitor wildlife that produce sound at any frequency. In practice, that 
means for species-specific considerations, the focus is primarily on birds, along with 
many mammals, amphibians, and insects that produce sound at frequencies audible to 
humans. In addition, we explicitly cover monitoring of whole soundscapes and how to 
relate these soundscapes to the biological components of the environment.

There are two main approaches for the use of acoustic data in biodiversity studies. The 
first is to detect, identify and analyse specific spectral and/or temporal features of the 
acoustic environment. We refer to this as ‘targeted’ monitoring - the detected features 
will most likely be sounds emitted by a target species. This method can also incorporate 
the detection and identification of any individual sound - for instance anthropogenic 
sounds in a study, such as gunshots, which may be evidence of disturbance events. 
The second approach is soundscape monitoring. Here the entire soundscape is treated 
as an emergent property of the landscape and environment, and is analysed through 
statistical representations of this whole. This can entail, for example, understanding 
whether it is a soundscape with a large variety of sounds from a range of sources, or 
a simpler soundscape with few and sparse sounds. A great deal more information is 
included on these differing approaches in Chapters 5 and 6 respectively, with their 
corresponding benefits and drawbacks. Which of the approaches is chosen (or how the 
two are combined) will influence all other aspects of study design.
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1.4. Soundscapes from the human perspective
Whilst these guidelines focus on ecoacoustics, another set of guidelines is currently 
being developed to study the soundscape as perceived by humans, with overlapping 
applications in acoustics, urban planning and design, and landscape design and 
management.  These guidelines are contained within the following publications: ‘ISO 
12913 Acoustics - Soundscape Part 1: Definition and conceptual framework46, Part 2: 
Data collection and reporting requirements47, and Part 3: Data analysis’, with further 
parts to be developed (British Standards Institution, 2014, 2018, 2019)48. This approach 
studies the soundscape through qualitative methods first, adopting a bottom-up 
approach, and afterwards by acoustic measurements, with a particular focus on human 
perception and amenity. Whilst  these sets of guidelines are being developed separately, 
certain environmental research and industry projects might benefit from the integration 
of both, and users will likely find complementarity between the two.  

Figure 1.3. Difficult habitat to survey on foot, such as wet woodland can be an excellent place 
to deploy autonomous recording units. Credit: Oliver Metcalf.
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1.5 How to use these guidelines
These guidelines are organised to take the reader through the process of carrying 
out an ecoacoustic monitoring study in the order that it might naturally occur – that 
is, from purchasing hardware, designing survey protocols, collecting acoustic data, 
analysing the data and inferring ecological insight. However, this is not necessarily the 
best order to plan a programme of passive acoustic monitoring. An optimal plan must 
be informed by the individual context and aims of each project, and inevitably shaped 
by time and financial constraints. For instance, someone reading the guidelines in the 
order presented here may determine that three top-of-the-range ARUs are preferable 
to ten cheaper but lower quality models, but on coming to the analysis chapter realise 
that the ecological analysis they hoped to conduct is simply not feasible with only 
three recording units. Similarly, a user with a very clear idea of the ecological objective 
of their study may determine the necessary analysis, but on reading the hardware 
chapter realise that undertaking such an analysis falls outside of their time or budget 
constraints and have to revisit which analyses are possible. Hence these guidelines are 
not intended to only be read linearly. Each chapter will inform trade-offs between each 
of the considerations above, and it is likely that a reader will want to move between the 
chapters as they plan a study.

We have attempted to provide a comprehensive introduction to all stages of ecoacoustic 
monitoring in these guidelines, but there is a great deal of literature elsewhere that 
contains valuable information on how to optimally conduct such surveys (see Table 1.2). 
Whilst we refer to these texts throughout, it is worth highlighting here a number of other 
excellent existing guidelines which readers may find useful 
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biodiversity. Credit: Oliver Metcalf.



Taxa Region Title Authors and link

Amphibians  USA Amphibian Monitoring Protocol 
(Version 2.0)

National Park Service, Great Lakes Inventory and Monitoring Network
https://www.nps.gov/im/glkn/amphibians.htm 

Bats USA
Range-wide Indiana bat & 
Northern long-eared bat survey 
guidelines.

U.S. Fish and Wildlife Service. (2022).
https://www.fws.gov/library/collections/range-wide-indiana-bat-and-
northern-long-eared-bat-survey-guidelines

Bats USA 

Guidance for conducting 
acoustic surveys for bats: Version 
1 detector deployment, file 
processing and database version

National Park Service
https://irma.nps.gov/DataStore/Reference/Profile/2231984

Bats UK

Designing effective survey and 
sampling protocols for passive 
acoustic monitoring as part of the 
national bat monitoring

Newson, S.E., Boughey, K.L., Robinson, R.A. & Gillings, S. 2021. JNCC Report 
No. 688, JNCC, Peterborough, ISSN 0963-8091
 https://hub.jncc.gov.uk/assets/4cc324dc-1ad8-446e-acdd-
a656348025b3

Bats Scotland
Bats and onshore wind turbines 
- survey, assessment and 
mitigation

NatureScot, 2021
https://www.nature.scot/doc/bats-and-onshore-wind-turbines-
survey-assessment-and-mitigation

Bats UK
Bat Surveys for Professional 
Ecologists: Good Practice 
Guidelines

Collins, J. (ed.) (2016). 3rd edition. The Bat Conservation Trust, London. ISBN-
13 978-1-872745-96-1
https://www.bats.org.uk/resources/guidance-for-professionals/bat-
surveys-for-professional-ecologists-good-practice-guidelines-3rd-
edition

Bats UK Guidelines for passive acoustics 
surveys of bats in woodland

Bat Conservation Trust
https://www.bats.org.uk/our-work/national-bat-monitoring-
programme/passive-acoustic-surveys/guidelines-for-passive-acoustic-
surveys-of-bats-in-woodland

Birds Canada

How to Most Effectively Use 
Autonomous Recording Units 
When Data are Processed by 
Human Listeners

Bayne, E., Knaggs, M.,  and Sólymos, P. Bioacoustic Unit, Bayne Lab at the 
University of Alberta & Alberta Biodiversity Monitoring Institute. 2017
http://bioacoustic.abmi.ca/wp-content/uploads/2017/08/ARUs_and_
Human_Listeners.pdf

Birds UK Bird Bioacoustic Surveys – 
Developing a Standard Protocol

Abrahams, C. In Practice the Bulletin of the Chartered Institute of Ecology 
and Environmental Management. December 2018.
https://www.researchgate.net/publication/329443381_Bird_
Bioacoustic_Surveys_-_Developing_a_Standard_Protocol

Cetaceans USA

Baseline Long-term Passive 
Acoustic Monitoring of Baleen 
and Sperm Whales and Offshore 
Wind Development

Appendix I of: Van Parijs, S. M., Baker, K., Carduner, J., Daly, J., Davis, G. E., 
Esch, C., … Staaterman, E. (2021). 
NOAA and BOEM Minimum Recommendations for Use of Passive Acoustic 
Listening Systems in Offshore Wind Energy Development Monitoring and 
Mitigation Programs. Frontiers in Marine Science, 8, 1575. doi:10.3389/
fmars.2021.760840

Cetaceans Scotland

Use of Static Passive Acoustic 
Monitoring (PAM) for monitoring 
cetaceans at Marine Renewable 
Energy Installations (MREIs) for 
Marine Scotland

Embling, C. B., Wilson, B., Benjamins, S., Pikesley, S., Thompson, P., Graham, I., 
Cheney, B., Brookes, K.L., Godley, B.J. & Witt, M. J.
https://tethys.pnnl.gov/sites/default/files/publications/emblingetal.
pdf

Soundscapes  Norway

Management relevant 
applications of acoustic 
monitoring for Norwegian nature 
– The Sound of Norway

Sethi, S. S., Fossøy, F., Cretois, B. & Rosten, C. M. 2021.. NINA Report 2064. 
Norwegian Institute for Nature Research.
https://brage.nina.no/nina-xmlui/handle/11250/2832294

Soundscapes 
and animals Global Passive acoustic monitoring in 

ecology and conservation

Ella Browning, Rory Gibb, Paul Glover-Kapfer & Kate E. Jones. 2017. WWF 
Conservation Technology Series 1(2). WWF-UK, Woking, United Kingdom.
https://www.wwf.org.uk/sites/default/files/2019-04/
Acousticmonitoring-WWF-guidelines.pdf

Soundscapes UK

The potential use of acoustic 
indices for biodiversity 
monitoring  at long-term 
ecological research (LTER) sites

Andrews, C. and Dick, J. 2021. UK Centre for Ecology & Hydrology
https://nora.nerc.ac.uk/id/eprint/531301/1/N531301CR.pdf

Table 1.2. Selected acoustic monitoring guidelines for other taxa and regions.
For the full table see Appendix 2.
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These guidelines represent the current opinions of experts in the field on what 
constitutes good practice for long-term acoustic monitoring of UK biodiversity. That 
does not mean they are perfect; not every challenge in ecoacoustic monitoring has been 
investigated, quantified, or properly assessed, and the available hardware and software 
tools are constantly evolving. The guidelines, therefore, can only supplement the 
knowledge and experience of those undertaking monitoring studies.

Whilst we have attempted to make these guidelines as comprehensive as possible, 
there is no substitute for experience. As an emerging interdisciplinary field, it can be 
challenging to find expertise in all of the relevant subdisciplines when carrying out a 
project – ecology, acoustics, signal processing, statistics, and in some cases machine-
learning. Nevertheless, we urge those wishing to undertake acoustic monitoring of 
biodiversity without such a range of skills not to be put off, but to reach out to the 
myriad sources of help and information highlighted in this document prior to designing 
or undertaking their studies. 

Finally, as the ultimate end product of biodiversity monitoring is ecological knowledge, 
the value of real-world, local, expertise is paramount. It is vital that the information and 
guidance in this document is interpreted by experienced and skilled ecologists at every 
step in order to apply these methods in an optimal manner.
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Figure 1.5. Difficult habitat to survey on foot, such as marsh can be an excellent place to 
deploy autonomous recording units. Credit: Oliver Metcalf.



Chapter 2: Hardware
Autonomous recording units (ARUs) underpin ecoacoustic monitoring, enabling the collection of 
extensive amounts of data with relative ease. Recent years have seen significant developments in 
the price, quality, and availability of these devices - although, not necessarily simultaneously in 
the same device. It is, however, a fast-moving area of development, with new devices emerging 
annually. Choosing which unit to purchase is likely to be one of the first decisions made by those 
looking to take up ecoacoustic monitoring. Yet, there are complex trade-offs to be made, and 
deciding on the best unit for a particular monitoring situation should be made after obtaining 
a clear idea of the objective of the study, potential recording schedules and requisite analysis 
methods49. In this chapter, we provide an introduction to ARUs, describing key considerations for 
hardware specification, device cost, and the need for device performance calibration.

2.1. ARU Specifications and what they mean
Most passive acoustic hardware comes with a long list of technical specifications, but for 
the novice ecoacoustician it may not always be clear what these mean, or how important 
they are. This section explains some of the common specifications found in passive 
acoustic hardware manuals.

2.1.1. Automated recording unit

Size and weight - these specifications are fairly self-explanatory, but are 
an important consideration. Larger units can often hold more batteries and 
memory cards, so can be left in the field for longer, but may take longer to 
deploy and collect as fewer can be carried in a single trip. In addition, smaller 
units can be easier to find ideal deployment locations for and are less obtrusive 
in the field, which also reduces the chance of theft.

Recording Time - how long an ARU can record continuously. Note that these 
manufacturer values are often given based on battery capacity rather than 
memory storage limits - recording at a high sampling rate may mean that the 
memory cards fill before the batteries run out; similarly the battery life will 
depend upon battery type, recording schedule and temperature. See Figure 
6 in Sugai et al. (2020)12 for an illustration of these tradeoffs. Because there 
is a greater power draw on start up,  non-continuous recording schedules 
may reduce total record time, but most manufacturer’s scheduling softwares 
are able to estimate the maximum total recording time based on different 
schedules.

Recording Format - the file format in which the unit is able to store sound 
recordings. The default option here is the .wav file format, which saves 
uncompressed data. Some units offer the capacity to record in lossless 
compression formats (.FLAC or .W4V), or lossy compressed (.MP3), which can 
dramatically increase the storage capacity. Lossy formats irreversibly alter the 
acoustic data in a way that is inaudible to humans, but that may potentially 
lose ecologically valuable sound data.
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Sample Rates - the sampling rate is how often the recording device samples 
the analogue signal in order to convert it to a digital representation. The sound 
signal needs to be sampled at least twice the rate of the maximum frequency 
of the sound of interest, e.g. using a sampling rate of 4 kHz will allow recording 
of sounds up to just 2 kHz, whilst a sampling rate of 36 kHz will allow the 
recording of sounds up to 18 kHz. It is therefore necessary to ensure that 
the chosen ARU has an available sampling rate double that of the maximum 
frequency of the sounds you wish to record. For human-audible frequencies 
this is generally not an issue, but for those wishing to use the same device 
to record bats, it is worth ensuring that the device sampling rates go high 
enough to record ultrasound. Most, if not all, devices offer variable sampling 
rates. This is a useful feature, as the size of the audio file increases linearly with 
the sampling rate (e.g. a 1 minute audio file recorded at 32 kHz sampling rate 
requires twice as much storage space on disk as one recorded at 16 kHz). For 
projects focussed on only species vocalising at low frequencies, being able to 
record at a low sampling rate is therefore a useful memory-saving feature.

Bit depth -  The number of bits (0s or 1s) used to store each sample: a higher 
number increases the amplitude resolution and decreases the theoretical 
signal to noise ratio. Digital data are stored in binary values thus a bit depth 
of n can store a range 2^n. A 8-bit system has a resolution of 256, 16-bit gives 
65,536 etc. A higher bit depth therefore uses more memory when recording 
audio, but also allows for greater recovery of data in the case of audio clipping.

Figure 2.1. Audiomoths are small and relatively cheap, making them readily 
deployable in a range of locations and with custom-made covers.
Credit: Oliver Metcalf.
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Power Options - ARU devices are run from a range of power sources. Most 
often they are battery-powered; alkaline batteries are cheaper but tend to hold 
a lower charge than lithium-ion batteries. Note that the rules around flying 
with, and posting/shipping of lithium-ion batteries are much more restrictive 
than those for alkaline batteries. Increasingly, some models allow for additional 
power sources such as solar panels, 12V or mains electricity to power the units 
so that they can run indefinitely. However, solar panels remain quite expensive 
and deep cycle batteries can lose efficiency over time. Note also, the increased 
obtrusiveness and subsequent increased chances of theft with the use of bulky 
solar panels. Self-built ARU designs can be run from power banks and other 
large batteries (including car batteries), meaning they can be exceptionally 
long-lasting in the field. Note that all batteries are affected by cold and 
performance will decline in sub-zero temperatures; advances in carbon-based 
materials may change this in the future. 

Data Storage - most devices take SD or micro-SD cards which are widely 
available and are relatively cheap. If you wish to use larger capacity SD cards 
(>32 GB) make sure that the device supports exFAT formatted cards, which 
will be the case for most units. Additional card slots allow the devices to be 
deployed for longer, and at higher sampling rates, meaning that  power supply 
is the constraining factor on unattended survey times.

Material and design - ARUs face a range of challenging scenarios under 
field conditions. Users will want to ensure that ARUs are fully waterproof, 
but also include vents to allow condensation to escape and sound to enter, 
if microphones are internal. Adding silica absorbent material into the 
enclosure is a good way to ensure electronics aren’t affected by condensation. 
Additionally, it is not uncommon for units to be of great interest to  a range 
of wildlife, so internal or small external microphones can be desirable, 
whilst limiting the number of points ants and other invertebrates can gain 
ingress, as these can damage devices. For external microphones, long-term 
moisture exposure can cause degradation of recording quality, and additional 
weatherproofing of the microphone can be desirable. Additionally, as with 
other autonomous devices like camera traps, theft remains a risk - particularly 
in more urban areas. Devices in dull colours avoid additional cost and effort in 
camouflaging them. Plastic surrounds can be adventitious as they allow the 
owner to brand identification marks directly on the unit reducing resale value. 
Some devices, such as the Wildlife Acoustics SM4, have additional mounting 
plates and/or points for attaching security cables.
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Interface - some devices have built in LCD screens and buttons allowing 
them to be manually scheduled in the field. Others have no interactivity and 
can only be adjusted through an app that can connect with the device or by 
loading a program onto the SD card/directly to the unit pre-deployment. Both 
options can work well. LCD screens allow for impromptu alteration of settings 
in the field, whereas the requirement to program devices before deployment 
can lead to more careful consideration and setting up of the devices whilst 
inside in a more environmentally benign environment - potentially eliminating 
a source of mistakes and additional water ingress to devices.

Temperature - some devices will function reliably over a broader range 
of temperatures; all devices are likely to function well within the average 
temperature ranges expected in the UK.

Gain settings - most recorders offer variable gain settings. Gain settings 
determine the amplitude with which a given environmental sound is recorded 
as digital data and therefore determine the effective spatial range. Increasing 
the gain increases ‘background’ as well as ‘signal’ within targeted acoustic 
research. Setting the gain too high can cause clipping, so tests should always 
be carried out to determine optimal tradeoffs according to the monitoring 
aims.  Analogue gain increases the amplitude of the sound signal before it is 
converted into digital data. Note that gain is distinguished from volume which 
describes the dB scaling of output - for example when listening to a playback 
of a recording. 

GPS - internal GPS units can be useful for two reasons. They allow sound files 
to be stamped with an accurate recording location, and they permit accurate 
time synchronisation of units across an array, which is necessary for sound 
localisation studies. The downside to internal GPS devices is that they have 
higher battery use, so if precise time synchronisation is not required, a device 
without GPS may be preferable.

Thermometer - a very few devices offer inbuilt thermometers to record the 
temperature during recording. As temperature can affect sound transmission 
through the air, this can be useful for detailed studies wishing to estimate 
detection distances, localise sound, and other analyses requiring the speed or 
spatial distribution of sound signals.

2.1.2. Microphones

Directional characteristics - microphones can be either directional or omni-
directional. Most microphones supplied with ARUs will be omni-directional, 
meaning they sample a three-dimensional sphere around the sensor with 
equal sensitivity . Some ARUs may allow attachment of external directional 
microphones, which have a cone shaped pick up pattern spreading out in front 
of the microphone. These produce more ‘focused’ recordings which may be 
useful for studies in which the spatial location of targets is precisely known, or 
potentially for some types of localisation analysis. 

Microphone sensitivity - when exposed to the same sound source, 
different microphone models may produce different output levels, as some 
microphones are more sensitive than others. Microphone sensitivity is the 
measure of the microphone’s ability to convert sound pressure into an electric 
voltage. The higher the sensitivity, the less pre-amplification is required to 
bring the sound to a usable level. The lower the sensitivity, the greater the 
pre-amplification required. Lower sensitivity does not necessarily mean a poor 
microphone. Microphone sensitivity differs as microphones are designed 
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for capturing specific sounds. Low sensitivity microphones are designed 
for capturing loud sounds and generally feature in the music industry for 
recording sounds such as guitar amplifiers or drum kits. These microphones 
are not recommended for quieter sounds, as in order to capture quieter 
sounds more gain will be required, resulting in a poorer signal-to-noise ratio. 
This also works in reverse, as highly sensitive microphones are designed to 
capture quieter sounds. However, if the sound to be captured is too loud, then 
the recording will clip, leading to a distorted recording.

Dynamic Range - The dynamic range of a microphone is the sound pressure 
level (SPL) difference between the highest and the lowest amplitude levels 
that the microphone and its circuitry can handle. Generally this is measured 
as the loudest SPL a microphone can capture without distorting (see Max 
input SPL below) and the quietest signal above the self noise (hiss) of the 
microphone and preamplifier. Once transduced to a digital representation, the 
dynamic range of amplitude is determined by the bit depth. 

Signal to Noise Ratio - When conducting species- or taxon-specific 
monitoring, wildlife sounds are rarely recorded in isolation. A recording will 
contain both the sound that you want to record (signal) and the sounds you 
do not want to record (noise). The relationship between these two elements 
is the Signal to Noise Ratio (SNR). The larger the difference between the signal 
and the noise, the clearer the recorded target sound will be, and the greater 
the potential detection distance. Generally there are three types of noise 
considered when evaluating SNR. The first is anthropophonic noise generated 
by humans. This can be anything from the low rumble of vehicles such as 
aeroplanes or cars, the chatter of humans or industrial sounds. Second is the 
noise generated from the natural world (biophony and geophony) that masks 
the signal we wish to be recorded, such as wind, rain, the movement of trees 
or even non-target animal sounds drowning out the target sounds. Finally, 
there is the self-noise, or Equivalent Input Noise (EIN), which is generated by 
ARUs themselves which is heard as a faint hiss, even when there is no mic 
input. This is a result of the movement of electrons in the device circuitry being 
picked up by the recording process along with the signals coming through 
and from the microphones. Generally, older or less expensive recorders will 
produce a higher level of self-noise. A recorder’s SNR level, as published by 
the manufacturer, refers to the self-noise generated from the recorder and 
microphone.

Figure 2.3. An illustration of varying signal to noise ratio across different devices. 
These spectrograms, created in Audacity50, show the same Redwing Turdus iliacus 
call on multiple devices. Devices consist of: a cheap USB microphone connected to a 
desktop PC, an AudioMoth in a plastic bag, an AudioMoth31 in a homemade waterproof 
case, a lapel microphone (EM172) with a digital audio recorder (Zoom H4n Pro; 
record level set to 80/100) and a Dodotronic parabolic microphone with a Sound 
Devices MixPre 3 digital audio recorder. For full details of the experiment comparing 
equipment for monitoring nocturnally migrating birds, see https://nocmig.
com/2020/02/26/equipment-comparison-february-2020/. ©Simon Gillings
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Frequency Response - defined as the range of sound or frequencies which a 
microphone can reproduce and how these vary within that range. In recording 
equipment, the frequency response describes the ability of a product to 
capture sound at a range of different frequencies - a flatter response produces 
a more faithful representation of the original signal. There is no perfect 
microphone for all situations, as microphones are developed to perform 
specific tasks. For example a microphone for recording ultrasonic sounds may 
not be very good at recording acoustic signals between 20Hz and 20 kHz, and 
conversely an acoustic microphone is unlikely to be able to record ultrasonic 
sounds effectively, however flatter responses are preferable in scientific work. 
The frequency response of a microphone is usually displayed graphically, 
giving a relative indication of the microphone response at a set range of 
frequencies. Figure 2.2 gives an example of a typical frequency response chart.

Figure 2.4. A frequency response chart, showing a microphone with a relatively flat 
response across the human-audible range, but a sharp decline in very low and higher 
frequencies. 

 
Max Input Sound Pressure Level (SPL) - The maximum sound pressure level 
a microphone can take without distorting. Distortion or clipping occurs when 
the signal exceeds the SPL of the microphone. Fig 2.3 shows two examples 
of the same recording, the waveform at the top of the first image shows that 
the signal is well within the range of the microphone, whereas the second 
example the waveform goes beyond the maximum SPL, the red elements of 
the sonogram shows the frequency where the sound is clipping.

Figure 2.5. Waveform 
(A1+B1) and spectrogram 
(A2+B2) plots for 
recordings showing sound 
pressure levels within (A) 
and exceeding (B) the 
capacity of the recording 
unit. Regular occurrence 
of sound pressure levels 
exceeding the recording 
unit capacity may indicate 
that the gain has been set 
too high. Spectrograms 
produced in Kaleidoscope 
Pro51.
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2.2. Cost trade-offs with recording units

2.2.1. Budget options

Budget options are likely to be sufficient for those with simple recording 
requirements - a single channel able to record the human-audible frequency, 
and no need for a built-in GPS. AudioMoths31 have revolutionised PAM since 
becoming available in 2019, with the low price-point making them widely 
accessible. AudioMoths have been used in acoustic studies all over the world. 
Although the microphone quality is somewhat lower than more expensive 
models, it has proven good enough for studies of many species in the human-
audible frequency range. Any loss in detection distance is made up for by the 
fact that, in most cases, it is still cheaper to buy a second unit than it is to buy 
an ARU with a better quality microphone. The recent release of AudioMoth 
version 1.2 includes an affordable weather-proof case and the potential to 
solder a 3.5mm jack for adding an external microphone, allowing the use of a 
range of cheaply available, good quality external microphones - as well as the 
addition of a GPS unit if desired. 

Unfortunately, there is currently one major challenge in using Audiomoths, 
which is their availability. As a non-commercial organisation, Open Acoustic 
Devices, the producers of Audiomoth, use the GroupGets52 platform to collect 
bulk orders of the devices before sending them to be manufactured. The 
timing of these group purchases are unpredictable, often at short-notice, and 
typically sell out fast (within hours). Audiomoths are also available for direct 
sale through Labmaker53 at a higher price, but production has been highly 
impacted by the global chip shortage and at the time of writing none are 
available until at least 2023 - although this is also increasingly the case for all 
suppliers of ARUs. There is also limited formal customer support, although 
there are useful forums on the Open Acoustic Devices54 website. Additionally, 
AudioMoths are not supplied with a robust weather-proof case and users must 
separately purchase or make one. Those wishing to leave recorders out in the 
field for extended periods in bad weather may look to more expensive units 
with more robust cases. For those undertaking casual or voluntary projects 
who are prepared to wait for initial purchases and replacement devices, 
Audiomoths may be an ideal solution, but commercial projects may prefer a 
more expensive unit that can be more readily obtained. That option may well 
be the Wildlife Acoustics SongMeter (SM) Micro55 which has better recording 
quality than an Audiomoth but is similar in many other respects. 

The final option for those with a limited budget but high specification 
requirements is to self-build an ARU following open-source designs, such as 
the SOLO56, ARUPI57, AURITA58, BUGG59, or Sonitor60 devices. These devices are 
all variations based on adding components to the cheap Raspberry Pi61 boards 
- except Sonitor which is primarily concerned with the cheap construction 
of taxon-specific microphones that can be attached to one of the previous 
devices. The resultant products can have external microphones, larger or 
adjustable power sources from AA batteries, car batteries to solar panels, 
waterproofing, and optional network connectivity. Performance of these 
devices is as good as some of the top-end devices listed in Table 1.1. However, 
obtaining the individual components can be time-consuming (from our own 
experience some of the recommended components are no longer available, 
and understanding what replacements are suitable requires at least some 
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knowledge of electrical engineering), and in some cases requires soldering. 
That means that the process is altogether more difficult than the simple click 
and purchase of more commercial products, and fully waterproofing the 
devices can be challenging. Nevertheless, building a device yourself allows a 
degree of flexibility and customisation not available in off-the-shelf products, 
and maybe the best, or only, option for more complex acoustic projects.

2.2.2. Mid-range options

The SM Mini55 offers an upgrade on the SM Micro, with better recording 
quality. The microphone, like all of the other units in the mid-range and top-
end categories, is removable, meaning that it can be changed as performance 
begins to decline after long exposure to the elements, without needing to 
replace the entire unit. The main appeal of the SM Mini however, is the ability 
to add the optional battery lid (£165) and use six 18650 Li-ion batteries giving 
it a battery life of 1100 hours (over 6 weeks) - meaning it is a very good option 
for those trying to minimise human time in recorder deployment. The SM Mini 
and SM Micro can also be programmed and checked through a bluetooth 
connection app. 

The Titley Chorus62 is a relatively new product, and as far as the authors 
are aware has not yet been used in any published academic research, or 
publicly available ecological studies in the UK. However, the manufacturer’s 
specifications and price point mean that for many, this unit may be the ideal 
trade-off between top-quality recording quality, robustness and price.

2.2.3. Top-end options

The Wildlife Acoustics SM455 and its Australian counterpart, the Frontier Labs 
BAR-LT63 are considered the market-leaders amongst ARUs, with a price tag to 
match. Both can be deployed in the field for extended periods of time, with 
huge storage capacity, robust casing, long battery life and optional capacity 
to add solar panels to keep them running for even longer. Both units have 
benefits and disadvantages for particular types of study - the BAR-LT has a 
built in GPS for localisation, whilst the SM4s are slightly easier to calibrate for 
long-term recording - but either is likely to be suitable for any of the analyses 
discussed in this guide. 
 

2.2.4. Localisation-enabled options

Localisation with ARUs is largely still in its infancy, with researchers and 
hobbyists generally making custom setups or modifying hardware/ software 
of existing omnidirectional devices. Popular advances include CARACAL64, Dev-
Audio/VoxNet65, WASN66 and MAARU67. At the time of writing, no dedicated 
commercial localising devices/ platforms are yet available but may soon 
become so. 

2.3. Maintenance and calibration
Environmental conditions have substantial impacts on the durability and reliability of 
acoustic sampling units. As recorders are repeatedly exposed to adverse environmental 
conditions, they will degrade in performance - especially exposed parts of the 
equipment such as microphones and their windshields. Protection from temperature 
extremes, rain or humidity may therefore be required for both microphone and 
recording unit68 - this may consist of the standard case normally provided as part of 

Page 25

https://www.wildlifeacoustics.com/products/song-meter-mini
https://www.wildlifeacoustics.com/products/song-meter-sm4


the recording system, potentially with other modifications to protect the unit further 
from rainfall, wind and animals. Procedures for the regular inspection, maintenance 
and calibration of recording systems are also needed to support field studies69,70,71. 
Microphone management, calibration and checking is very important before and after 
field deployments, as degradation in microphone quality over time can significantly 
affect results. To aid this, recorders and microphones should be individually numbered, 
checked and calibrated on a regular basis (at least once per year), using a piston-phone, 
standardised sound emitters, sweep tests, or other evaluation set-ups to confirm that the 
sensitivity of the recording system has not been adversely affected (useful maintenance 
resources are available from the Alberta Bioacoustic Unit72). Where smaller and cheaper 
ARUs cannot be directly calibrated, it is important to check microphones are still working 
within acceptable limits. 

Table 2.1. Table of common ARU choices available in the UK. Adapted from Darras et al., 201919.
 

I. https://www.openacousticdevices.info/audiomoth
II. Price taken from the most recent round of sales in GroupGets https://groupgets.

commanufacturers/open-acoustic-devices/products/audiomoth and converted to GBP
III. https://www.frontierlabs.com.au/bar-lt
IV. Price obtained from NHBS on 25/07/2022: https://www.nhbs.com/frontier-labs-bar-lt-

bioacoustic-recorder
V. titley-scientific.com/uk/chorus.html
VI. https://www.wildlifeacoustics.com/products/song-meter-micro
VII. https://www.wildlifeacoustics.com/products/song-meter-mini
VIII. https://www.wildlifeacoustics.com/products/song-meter-sm4
IX. https://www.instructables.com/ARUPi-A-Low-Cost-Automated-Recording-Unit-for-Soun/
X. https://www.tandfonline.com/doi/suppl/10.1080/09524622.2018.1463293?scroll=top
XI. https://www.bugg.xyz/
XII. https://solo-system.github.io/home.html
XIII. Darras, K., Kolbrek, B., Knorr, A., Meyer, V., Zippert, M., & Wenzel, A. (2021). Assembling 

cheap, high-performance microphones for recording terrestrial wildlife: the Sonitor system. 
F1000Research, 7, 1984. doi:10.12688/f1000research.17511.3
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Model
Audiomoth 

1.2 with 
caseI

BAR-LTIII ChorusV SM MicroVI SM MiniVII SM4VII
ARUPI, AURITA, 

BUGG, Solo 
SonitorIX, X, XI, XII, XIII

Manufacturer Open Acoustic 
Devices

Frontier 
Labs

Titley
Wildlife 

Acoustics
Wildlife 

Acoustics
Wildlife 

Acoustics
Raspberry-Pi based 

recorders

Channels 1 1or 2 2 1 1 2 1 or 2

Signal-to-noise 
ratio at 1kHz 63 80 80 73 78 80 80

Price in GBP (on 
25/07/2022) 95II 879IV 474 239IV 489IV 845IV Variable, approx. 100-300

Storage 1 micro-SD 
card

4 SD cards 1 SD card
1 micro-SD 

cards
1 SD card 2 SD cards 1 micro-SD card

Power 3 AA cells
6 18650 

cells
4 AA cells 3 AA cells

18650 Li-ion 
cell or 4 AA 

batteries
4 D cells

Power bank/car battery/
solar

Solar panel no optional no no no optional optional

Continuous 
recording time 187 600 300 200 1200 510 variable

GPS no integrated integrated no no optional no

Frequency range yes yes yes no no no yes - some

https://www.openacousticdevices.info/audiomoth
https://groupgets.com  manufacturers/open-acoustic-devices/products/audiomoth and converted to GBP
https://groupgets.com  manufacturers/open-acoustic-devices/products/audiomoth and converted to GBP
https://www.frontierlabs.com.au/bar-lt
https://www.nhbs.com/frontier-labs-bar-lt-bioacoustic-recorder
https://www.nhbs.com/frontier-labs-bar-lt-bioacoustic-recorder
http://titley-scientific.com/uk/chorus.html 
https://www.wildlifeacoustics.com/products/song-meter-micro 
https://www.wildlifeacoustics.com/products/song-meter-mini 
https://www.wildlifeacoustics.com/products/song-meter-sm4 
https://www.instructables.com/ARUPi-A-Low-Cost-Automated-Recording-Unit-for-Soun/ 
https://www.tandfonline.com/doi/suppl/10.1080/09524622.2018.1463293?scroll=top 
https://www.bugg.xyz/ 
https://solo-system.github.io/home.html 


2.4. Software for programming ARUs
Most of the devices listed above come with their own software for programming, 
synchronising, and scheduling devices. In the case of Audiomoth, Wildlife Acoustics, 
and Frontier Labs (which the authors have experience of ), these are simple, reasonably 
intuitive programs that allow for a great deal of flexibility and make the process of 
preparing recorders for deployment relatively straight-forward. However this is not 
generally the case for the self-built devices (SOLO/ARUPI/AURITA), and although some 
rudimentary software may be available, the flexibility of recording protocols is inevitably 
lower, and coding skills are often required.

2.5. Future-proofing
Whilst the fast-paced development of acoustic hardware is a great benefit to acoustic 
monitoring, it also presents particular novel challenges for long-term monitoring. 
Ensuring that any acoustic differences recorded in the same study ten years apart are 
due to real-world ecological change and not differences in the performance of the 
recorder used is of paramount importance. However,it is an issue that  has been largely 
neglected in the academic literature. The simplest solution is to ensure that the same 
devices are used throughout any monitoring project, with regular calibration and 
replacement of deteriorating parts. 

However, this sort of continuity may not be possible for several reasons. The first is that 
manufacturers are unlikely to maintain production of the same models with the same 
specifications over long enough periods to allow like-for-like replacement - for instance 
two highly popular devices, Audiomoth v1.031 and Wildlife Acoustic SM 255, have been 
discontinued in recent years, and are no longer available for purchase new. Secondly, 
the capacity of a team to visit the field may change, meaning that they may require 
devices with different characteristics that can be left to record for longer. Similarly, when 
devices such as the BUGG59, which are able to record continuously using solar powered 
chargers and transmit data in real-time using a mobile phone SIM card, are available for 
commercial purchase - the power and memory benefits of such advances may outweigh 
the negatives of lost continuity.

To these challenges we cannot offer a certain solution, but several prudent measures 
could be taken in anticipation of better solutions emerging in the future. Firstly, we 
recommend playing broadband white noise at a known amplitude and distance from 
the recorder, from an unobscured point. White noise sound files are easily sourced 
from a range of locations on the internet, or can be easily generated in Audacity50,73 
(see Chapter 4.2 for more on analysis software). Climatic conditions (temperature and 
humidity in particular) should also be recorded. This should be done when the ARU is 
first deployed, and at regular intervals thereafter. Additionally, when a device is being 
replaced, the new ARU and old ARU should be deployed simultaneously for a period of 
time. This will allow some reference data for comparison and may allow some degree of 
calibration between the devices.  
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Chapter 3: Study Protocol
As with any ecological study, survey design is vital for drawing robust inferences from the 
data collected. When considering survey design, there are likely to be complex trade-offs to 
be considered between landscape, size of the study site, budgetary limitations and human 
effort available - experienced ecologists with familiarity of the study area are likely to be best 
placed to make these decisions. This chapter discusses some of the most important aspects for 
consideration when designing an acoustic monitoring study.
Placement of ARUs and timing of deployment requires careful planning - the key objective 
here should be to obtain acoustic data that are representative of the ecological features being 
investigated. 

3.1 Temporal considerations
Temporal programming within the ARU deployment period can be usefully considered 
at different  temporal scales: deployment schedule, recording periods, and sampling 
schedule. Deployment schedule refers to the times when an ARU will be placed in the 
field during weeks, months, seasons. Recording periods describe the time that recording 
takes place within a 24 hour cycle - either continuously or targeted, for instance during 
the dawn chorus. The sampling schedule describes the pattern of recording within a 
given recording period This could range from continuous recording to short recordings 
of just a few seconds every hour and is determined by the recording length and inter-
recording intervals. 

3.1.1. Deployment Schedule 

When considering optimal deployment schedules for long-term monitoring, 
it is necessary to consider both the temporal and spatial aspects of the survey 
design together in order to ensure the study objectives can be met. In general, 
there are two approaches to deployment schedules that can be taken when 
assuming equal survey effort. For studies that prioritise tracking temporal 
patterns, using a continuous or near continuous deployment at the expense of 
a higher number of recording devices is likely to be preferable. 

Imagine here a small area of 20 hectares allocated for a rewilding project and 
where assessing habitat change over time is the priority. In this case, four 
recorders could be placed, either at random locations, or at selected important 
sites such as key habitats, and left to record throughout the year.  In contrast, 
for studies more concerned with the spatial aspects of target species presence, 
then using short but intensive study periods with a greater number of devices 
distributed spatially is likely to be preferable. Imagine a large farm, concerned 
about the effect of land management changes on the site’s bird population. 
An array of 15 recorders could be placed in a regular grid across the site for a 
month-long period during the breeding season, and again for a similar period 
in winter, with annual repeats in order to assess community turnover.
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Figure 3.1. Illustration of possible temporal scheduling of PAM surveys. 
Deployment of ARUs (top) can be continuous throughout the year, or targeted at 
certain significant periods. Recording periods and sampling schedules (bottom) can 
be programmed to only collect data when desired - illustrated here is a continuous 
recording period across the diel cycle with a sampling schedule of two minutes every 
ten (orange), and a non-continuous recording period targeting dawn and dusk but 
sampling continuously during these periods (grey).

3.1.2. Recording period

Most ARUs come with the capacity to set recording periods. Non-continuous 
recording periods and sampling schedules are useful when resources are 
limited; they enable study designs that can be robust enough to meet the 
study aims, whilst reducing the amount of data collected and battery power 
used, therefore increasing how long ARUs can be left in the field and reducing 
overall effort. A key consideration here is that it is impossible to analyse 
data that doesn’t exist, but it is easy to discard or disregard data if too much 
is collected. In most cases, it will be desirable to conduct a pilot study to 
establish exactly how much data collection is required to make the desired 
analysis feasible. It may often be sensible to have some data redundancy and 
collect more than necessary, but this must be balanced with the carbon cost 
of data storage as the big data of remote-sensing scales globally.  Guidance in 
Chapters 5 and 6 can be used to assess survey completeness. 

Choosing recording periods within a deployment is relatively straightforward. 
For general soundscape studies or studies without strong hypotheses about 
key periods for target taxa vocalisation, they should cover the entire diel 
cycle. Other more targeted options where biophonic activity is of interest 
may be to only sample at day or night, at dawn, or avoiding periods of high 
anthropogenic activity12. Alternatively, it may be desirable to only record 
during periods of expected peak activity in studies with strong hypotheses 
about the timing of the vocal activity of focal species (e.g. Natterjack Toad 
Epidalea calamita chorusing at dusk). 
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3.1.3. Sampling schedule

The choice of sampling schedule is dependent on the type of study being 
conducted, and the goals of the study. For projects aimed at sampling 
ecological communities (Chapter 5), studies have shown74,75,76 that using 
samples with shorter recording length and smaller inter-recording intervals, 
dispersed over long periods, are likely to be more effective in obtaining a good 
representation of the community present than longer duration samples with 
greater inter-recording intervals over shorter periods. A UK study aiming to 
obtain a good representation of the bird community at a single location with 
one hour of sampling effort would likely capture a high proportion of the 
species present using sixty samples of 1 minute duration spread across the 
entire bird breeding season rather than a single hour during one morning75. 
However, it is likely that this effect declines with lower species richness, and 
is unlikely to have a very strong impact in the UK. The optimal selection will 
depend on the sampled community, how often species make identifiable 
sounds, and daily behaviour patterns of the species of interest.

For soundscape studies (Chapter 6), the optimal sampling schedule will 
depend upon the phenomena of interest. Where diurnal patterns are of 
interest and events of interest are not too rare a common approach is to have a 
sampling schedule recording one minute in every ten (e.g. a recording length 
of one minute, with a nine minute inter-recording interval and a continuous 
recording period), particularly when deployment periods are throughout the 
year or across entire seasons. Shorter or more targeted deployment periods 
are likely to require a more frequent sampling schedule. 

3.2 Spatial considerations
The exact number and placement of ARUs should be determined by an ecologist 
following the same principles of representativeness and sample size that would be 
applied to any ecological study. Distance between recorders will be determined by 
the objective of the study and the target species, but for small passerine birds, spacing 
of approximately 250m should be enough in most habitats to ensure independence 
of recordings if desired, or under 50m if overlap in recordings is necessary (e.g. for 
localisation). Note that recording distance will also be determined by input gain, see 
section 1. 

3.2.1. Detection distance

Understanding the ‘detection distance’ being monitored by a single ARU is one 
of the most important considerations when designing a study. However, it is 
also one of the most difficult to calculate. The amplitude of sounds at source 
hugely vary across potential ecological targets (e.g. the sound of a barking 
Roe Deer Capreolus capreolus or duetting Tawny Owls Strix aluco will carry 
much further than a singing Goldcrest Regulus regulus). Additionally, there are 
a number of factors that impact sound attenuation. Sound attenuation is the 
energy loss of a sound wave as it travels through air, soil, water or other media 
- once enough energy has been lost, a sound wave becomes indistinguishable 
from background noise. These factors include environmental parameters that 
vary throughout the day, such as background noise level, temperature, air 
pressure and humidity - meaning that detection distances at a single location 
will vary over time. Attenuation is also impacted by the physical surroundings, 
such as vegetation type and density, and local topography. Sound attenuation 
occurs at different rates at different frequencies. In general, lower pitch sounds 
have less sound attenuation than higher pitch sounds, but this can vary, as 
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some frequencies carry better through vegetation than others. There is an 
increasing body of academic research on measuring detection distances and 
ecological sound attenuation77,78, but none of the methods so far proposed 
are straightforward. Some problems with estimation appear intractable, 
such as animals moving or facing in different directions whilst vocalising, or 
intraspecific variation in vocalisation amplitude, and these rely on assumptions 
that using an average is reasonable (e.g. that a deer barks as often facing the 
microphone as it does when facing away).

In consequence, most ecoacoustic studies do not estimate detection distances 
precisely12. Instead many studies use broad estimates obtained by playing 
sounds at increasing distances and at regular time intervals, or relying on rules-
of-thumb. At the UKAN+ Long-term Acoustic Monitoring of UK Biodiversity 
Symposium, one such approximation that had widespread agreement was 
that if a human observer could hear a call, then a good quality ARU was likely 
to be able to record this as well.

It is worth noting that not knowing precise sound attenuation rates limits 
the types of analysis possible, as measures of estimating abundance often 
require a strong understanding of the location/distance of calling individuals. 
This means that comparisons of community composition and soundscape 
characterisation tend to be favoured in ecoacoustic studies, although even 
here limitations in understanding detection distances should be carefully 
considered when making comparisons between sites. 

3.2.2. ARU Positioning

Having identified ARU sites, and the deployment schedule, the microsite 
location of recorders can also have an impact on the data collected. Although 
ARU microphones are mostly omnidirectional, sound can be blocked by solid 
objects. For instance, placement of an ARU against a very broad tree trunk 
will inhibit collection of sounds from directly behind the tree; too close to the 
ground will introduce reflections. If the study is targeted towards a particular 
area or species, care should be taken to ensure there is a clear line of sight 
between the ARU and the position the target sounds are most likely to occur. 
For general recording of the environment, locating the ARU with as open an 
aspect as possible will be beneficial. Most studies place recorders 1-2m off 
the ground, both to avoid reflections and interference by curious ungulates. 
This is likely to be suitable for most UK-based studies, but placing them higher 
may be beneficial if a focus on canopy dwelling species is desirable, or there is 
concern that equipment may be vandalised. 

In many cases, ideal sites for the ARUs may not be possible. Careful 
consideration should be given to the risk of theft, potential damage from 
passing bovines, and to the privacy of any passers by who are using the area 
(see Chapter 3.3 for more on privacy concerns). It may well be necessary to 
make considerable concessions in concealing the location of ARUs to avoid 
theft - imperfect data is better than returning after several months to an 
absent ARU! In the experience of the authors, locating an ARU tucked in on the 
edge of a bush does little to limit the collection of soundscape data, assuming 
that rustling branches can be avoided. Additionally, there is some research79 
that suggests the use of personal  and polite labels left on the recorder, as 
opposed to neutral or aggressive messaging, is most effective in deterring 
thefts of unattended scientific equipment, although this must be hugely 
culturally variable. In addition, warning signs that recording is taking 
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place, possibly at some distance from the actual devices, may go some way to 
alleviating privacy concerns, especially on private sites. Landowner permission 
should always be obtained before deployment of ARUs for ecological 
monitoring. 

3.3 Audio settings
A major decision in relation to programming audio settings on ARUs is the sampling 
frequency. As mentioned previously, the sampling rate needs to be at least double the 
frequency at which you wish to record data (or triple if the intention is to use the same 
data to survey ultrasonic acoustic diversity). For general studies of human-audible 
sound, we recommend using a sampling rate of 48 kHz. The reasoning behind this is 
purely pragmatic, it covers the entire human audible range, and is a common sampling 
frequency available on the majority of sound recorders. 

The file size of audio data increases linearly with sampling rate, meaning that in some 
cases it may be preferable to use a lower sampling rate. This will be primarily in studies 
targeted at species with low frequency calls. For instance, a study on Common Cuckoo 
Cuculus canorus which sing at ~1 kHz and below, could use a sampling frequency of 
4 kHz. This would give audio data for everything below 2 kHz - capturing all cuckoo 
song, whilst also requiring just 8.3% of the storage capacity of a 48 kHz sampling rate. 
However, this would inevitably constrain future questions that might be investigated 
with the same set of recordings, and low sample rate can result in poor data resolution.

The other options likely requiring input when scheduling an ARU are the file type, 
bit-depth and gain. One study has shown that compression of .wav audio to MP3 had 
a surprisingly small impact on the calculation of some acoustic index values, while 
others were more severely affected80. Other studies have found similarly mixed effects 
in targeted analysis. Nevertheless, this form of compression does entail some loss of 
original data. Most users tend to record using uncompressed files (.wav) or lossless 
compression (e.g. .flac), which avoids any risk of losing information. Furthermore, 
it is increasingly standard for long-term audio storage to be in .wav format, so we 
recommend that initial recordings are made in this format and converted later if 
necessary. 

Bit-depth determines the number of steps in the amplitude scale of a recording, with 
increasing bit-depth representing higher resolution in the amplitude, and hence 
providing more discrimination between loud and quiet sounds. Bit depth determines 
the dynamic range of capture and will impact the amount of information collected, 
meaning that incorrect gain settings are less likely to impact data collection. Here, 
we strongly recommend a bit depth of 16 or higher, as a bit-depth of 8 tends to be of 
relatively poor quality. There is ongoing debate about whether the difference in quality 
between 16 and 24 bit recordings are discernible to the human ear using most audio 
equipment, and consequently a bit depth of 16 is a common choice.

Finally, gain is the amount of amplification the recorder applies to the incoming audio 
signal before recording it - an inverse to the volume control on a television. In most 
cases a medium gain setting of ~+20 dB will likely be most appropriate, it will help in 
collecting some quieter sound at a high enough quality to be recognisable, without 
resulting in excess clipping. However, if target species are known to be at a great 
distance, or are particularly quiet and there is reason to think clipping won’t be an issue, 
then using higher gain settings may be appropriate - it is important to test this if at all 
possible. Note that gain settings will be hardware specific - this is a good reason for only 
using one type of ARU across a survey - but if it is necessary to use more than one type 
they will require calibration across devices.  

Page 32



3.4 Metadata
Metadata is the information about the recorded data: date, time, location, recording 
device, gain settings, etc. Sound files contain a great deal of valuable information for 
biodiversity scientists. Without appropriate metadata, however, these files have no 
significant purpose. Metadata allows the contextualisation of audio data within an 
informative context in the same way that appropriate labels provide meaningful context 
to voucher specimens deposited in a museum collection. As a bare minimum, this 
information should provide the location, date, time, details of who made the recording, 
the equipment and settings used. Spoken metadata at the start of a recording has the 
advantage of being hard to separate from the data itself, and has the disadvantage 
of potentially interfering with, or at least complicating, automated analysis pipelines 
and can only be done at the start and end of PAM deployments. Spoken metadata is 
not a substitute for metadata that enables quick searching by humans and machines. 
Searching effectively for a file by date, time and location requires the metadata to be in 
text form. Many devices will embed this in the file name, and generated text file. 

There are two options for metadata storage: within the file and in an associated 
database. Both have advantages and are not mutually exclusive, so a combination of 
both is often the best solution. Many tools allow for encoding metadata within files 
(examples); the metadata are stored within the file and persist if the files are accidentally 
renamed. 

The primary advantage of a metadata database is that complex queries are easily 
constructed and executed quickly. Another advantage of a database is that relationships 
between files and the results of analyses can be defined. Machine learning algorithms 
may find numerous species of birds singing within an audio file at different times. A 
properly constructed metadata database can quickly identify periods where a Eurasian 
Blackbird Turdus merula is singing from many thousands of audio files. Depositing your 
files into an appropriate repository may provide the level of functionality required 
(and long-term storage) in exchange for making the files publicly available (either 
immediately or after an embargo period).

Ensuring interoperability with existing and future bioacoustics infrastructures such as 
repositories and aggregators should also be considered. Generally, this means using the 
most atomic metadata fields that are practical.

Audubon Core81 (the Biodiversity Information Standards (TDWG) standard for audio-
visual data) is yet to be as widely used as its sister standard DarwinCore82 but has 
an increasing number of users within the biodiversity community. Over the last two 
years, the standard has actively engaged with the bioacoustics community to ensure 
the metadata needs of the bioacoustic and ecoacoustic communities are met by the 
standard. Additionally, the recent “RegionOfInterest” addition expands the standard 
to include metadata about regions within a file (e.g. periods of blackbird song as 
discussed above). Making sure that each field in the metadata matches an equivalent 
AudubonCore term will help to future-proof your metadata. There is work within the 
AudubonCore Maintenance Group to provide a user guide for audio files and analyses, 
which will soon become a helpful document for the ecoacoustics community.

Standardised metadata will have long-term benefits for the community, making it 
easier to archive and aggregate datasets. An interesting example of this, the Global 
Soundscapes Project83, aims to collate metadata from soundscape recording datasets 
globally, and currently holds metadata on 392 projects - and is actively looking for new 
collaborators.
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3.5 Data storage
Data storage remains one of the most challenging aspects of ecoacoustics. It is easy 
to collect terabytes of acoustic data, even over relatively short survey periods. When 
planning surveys it is important that storing the collected data in triplicate - and at a 
minimum of two independent locations - is budgeted for. When working in the field in 
remote areas, aim to work with duplicate copies on portable hard drives, until they can 
get backed up to more permanent storage solutions. 

Cloud based computing appears to be the future for long-term large data storage, as 
it is scalable, flexible, and provides data security and regular data back-up. However, 
the cost can be prohibitive for smaller projects and the carbon cost is invariably higher. 
Slow internet connections can result in local storage being far faster for analysis. Cloud 
storage also offers the potential for easier sharing of data and more collaborative 
projects - however there are few options available for large datasets. Free longer term 
cloud storage facilities for scientific projects are being developed at national level 
in some countries, but the UK lags behind. One potential option is to upload data to 
Arbimon35, which offers free storage in exchange for sharing data. For small amounts 
of acoustic data, such as good recordings of rare species or particularly interesting 
soundscapes, short audio files or sets can be uploaded to online repositories such 
as xeno-canto85 or the Macaulay Library86 - both of which hold a huge amount of 
ecoacoustic reference material useful for acoustic identification or as training data for 
classification models.

One other option to reduce data storage requirements is to compress the files being 
stored. A lossless file compression such as .flac may be a good option here. One of 
the largest long-term acoustic monitoring projects globally, the Australian Acoustic 
Observatory87, advocates an extreme form of acoustic data compression, converting 
the original audio files to a series of acoustic indices from which some of the most 
relevant ecological data can be retrieved88. This is estimated to require six to eight 
orders of magnitude less storage than preserving the original audio. Nevertheless, we 
would recommend storing the original audio data (or at the very least a representative 
subsample) and only using this method as a last resort as it entails a high degree of 
information loss.
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Figure 3.2. Woodland can have a diverse range of vocalising species and can vary 
greatly by season – a woodland soundscape will sound very different in autumn 
compared to spring. Credit: Oliver Metcalf.



Chapter 4. Data Exploration
Having collected audio data from a PAM study, the sheer quantity of data collected can seem 
overwhelming. It is generally desirable to undertake some preliminary data exploration to 
determine whether the ARUs have worked correctly, assess the quality of the data, and to get 
a feel for the soundscapes recorded. This last point in particular can be vital for gaining an 
understanding of the acoustic environment being recorded and the way it changes across the 
diel cycle and over longer periods, and for formulating hypotheses for future or additional studies. 
Several processes which can help handle large quantities of audio data are discussed in this 
chapter

4.1 Basic data checks
Often the simplest of checks are the most important in ensuring the data collected is 
what it is expected to be. Some of the most important and useful file metadata can 
be accessed by viewing the collected files on a computer. For instance, in Windows 
operating systems (OS), opening the folder that contains the relevant audio files, 
selecting the View tab and the ‘Details’ option, then using the ‘Add columns’ menu to 
add the relevant file information to the screen can be a very useful way to quickly view 
the recording metadata (the same information is available in the Finder sidebar on Mac 
OS). Spending ten minutes checking the start and end dates of recordings, numbers of 
files from each ARU, file sizes, file duration, stereo/mono, sample rate and bit-depth are 
all as expected can be invaluable in identifying any problems carried over from set-up or 
recording. 

4.2 Spectrograms
Spectrograms provide a visual representation of the audio data, with the frequency on 
the y-axis, time on the x-axis, and the amplitude represented by the intensity of colour 
(Figures 2.1, 2.3, 4.1). Spectrograms are produced by transforming the raw audio data 
from the time-amplitude domain to the time-frequency domain typically using a fast 
Fourier transform (FFT). It is one of the commonest ways in which to assess audio data. 

Generally it is a good idea to make a quick inspection of any new data collected by 
visually inspecting a small portion of the data, and displaying it with 15 seconds to 1 
minute viewable on the x-axis at a time. Visual inspection of audio at this timescale is 
likely to be significantly faster than listening to the data directly. This will help to identify 
any periods in which the recorder may have malfunctioned, or anomalous sound events 
such as a period of construction work close to the recorder.  Most spectrogram software 
has a playback function and we strongly advocate listening to as much data as possible, 
sampling whilst viewing to develop your understanding of the soundscape patterns at 
the study site in order to support interpretation of later statistical analyses.
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Figure 4.1. An example of a busy spectrogram. Recorded during the dawn chorus in the Lower 
Derwent Valley NNR on 05/05/2020. Spectrogram produced using Raven Pro91.

Most generalist sound-editing software can display spectrograms, and allow the sound 
displayed to be listened to simultaneously, whilst also offering various options for 
editing sound. We do not provide a comprehensive list of all of the software available, 
instead focussing on some popular choices in ecoacoustics. We have illustrated this 
guidance document with spectrograms created from a range of software to provide 
comparisons. For a wider range of software options, an extensive list has been made by 
Tessa Rhinehart89. 

One of the most popular choices for viewing and editing audio files is Audacity50, a free, 
easy to use open-source audio editor (see Figure 2.1). It is a powerful piece of software 
capable of a wide range of visualisation and editing processes. As Audacity is intended 
as a general purpose audio editor, it is not necessarily optimised for conducting 
ecoacoustic analysis - however, a good article on setting up Audacity for this purpose 
(focussed on birds) can be found on the xeno-canto website90.

Raven Lite (free) and Raven Pro91 (licensed) offer a program explicitly designed for 
bioacoustic analysis, meaning it is somewhat more intuitive to use, at least initially, 
than Audacity. It is convenient for paging through large audio files, or large quantities 
of smaller files. Raven Pro is also good for easy labelling of audio data, although some 
of the automatic measurement and labelling options are limited to Raven Pro only. The 
Raven User Guide is also an excellent document for anyone looking for an explanation as 
to how to configure a spectrogram for maximum clarity, and what the different settings 
do, in a way that is applicable to many different programs.

Kaleidoscope Pro, and its free viewer option, Kaleidoscope Lite, is produced by Wildlife 
Acoustics51. It can load and close sound files with a single keyboard click, allowing 
extremely rapid visual review of spectrograms for a batch of files, which can be easily 
tuned for gain and contrast. Sonic Visualiser92 is a free tool for visualisation, analysis and 
annotation which was designed for music analysis but with high resolution and fast 
loading spectrogram viewing capacity. 

It is also possible to create your own spectrograms using R93 (e.g. in the ‘seewave’ 
package94), Python95 (e.g. in Matplotlib96 or SciPy97) or MatLab98 code (e.g. Signal 
processing Toolbox), although these tend to be less interactive and it can be tricky to 
obtain as much clarity as in the custom made sound-editing software without good 
knowledge of the scripting language. There are multiple well-documented packages 
available in each language.
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4.3 False-colour spectrograms/plots
False-colour spectrograms99 and plots are methods to visualise sound over long time 
periods, normally using time on the x-axis and frequency or date on the y-axis. Unlike 
standard spectrograms, instead of using the raw audio data as the input to ascertain 
amplitude, false-colour spectrograms take the results of three acoustic indices (see 
Chapter 6 for more on acoustic indices), and use these as the values in the Red-Green-
Blue channels to colourise the spectrogram (Figure 4.2). This means that the input 
data is far less granular than a standard spectrogram, allowing for clearer visualisation 
of patterns and trends over longer time periods. The principle behind false-colour 
spectrograms can be extended to false-colour Extended Acoustic Summary images100, 
replacing frequency on the y-axis with another measure of time (e.g. month, year), to 
allow visualisation of acoustic change over prolonged periods (Figure 4.3). 

The developers of the false-colour spectrogram, Queensland University of Technology 
Ecoacoustics Lab, currently provide the Ecoacoustic Analysis Programs software package 
for easy generation of false-colour spectrograms, freely downloadable from GitHub101. 
In addition, code to create false-colour spectrograms in R is available in Appendix 3, and 
the Python package scikit-maad102 contains functions to create your own, or Python 
code to do so is available on Sarab Sethi’s GitHub103.

 

Figure 4.2 False-colour spectrogram showing a 24 hour period, and a frequency range up 
to 22 kHz. The dawn chorus is visible between 5-8am, with corresponding high values in the 
acoustic indices assigned to the red and green colour bands. Credit: Sarab Sethi.
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Figure 4.3 False-colour plot for nine ARUs deployed simultaneously across a site over a 17 day 
period. The purple bands visible in most plots show low acoustic index values during the night, 
with the green blocks in site 9573 showing high levels of acoustic activity at this site.

4.4. Data pre-processing
Having initially visually assessed the data, it may be apparent that some of the data are 
problematic. Problematic data can occur for a range of reasons, including recorder faults, 
an excess of anthrophony or geophony (e.g. from roadworks nearby, or a period of high 
wind and rain), or the absence of any acoustic signals of interest. Careful thought needs 
to be given as to what constitutes unwanted noise in the data, and what could be an 
important part of a site’s acoustic character - this will vary by the study objectives. 

In general, there are few automated processes or documented methods for the removal 
of such problematic data. The hardRain package104 in R can identify and remove periods 
of intense rainfall from datasets, but is primarily aimed at data collected in tropical 
forests, and is less effective in temperate environments. There are also published 
methods for identifying wind affected files and ‘denoising’ them (i.e. minimising the 
impact of wind noise)105. In many cases, it is likely to be easiest to manually search 
for outliers by extracting a range of acoustic index values, and then either visually 
examining false colour spectrograms, or by standard statistical methods of identifying 
outliers in a dataset. It is also a good idea in large datasets to remove the first 15 minutes 
of recording after deployment (or longer if possible), and the last 15 minutes prior to 
collection to limit any impact from the presence of people during this period.

A type of problematic data that may be less apparent during a visual inspection is 
private conversations of people in proximity to the recorders. The presence of human 
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speech in passive acoustic data raises a number of ethical concerns, but has received 
little attention in the ecoacoustics literature. The simplest way to eliminate human 
speech from audio data is to apply a high-pass filter at a frequency that would remove all 
or most human sound , for instance ~2 kHz would certainly be enough, however, a large 
amount of biophony would also be removed; for instance Great Bittern Botaurus stellaris 
and Common Cuckoo Cuculus canorus vocalisations would also be entirely eliminated. 
There are a number of well-developed voice activity detection softwares available, 
however they are primarily developed for indoor use with voices in close proximity - only 
one program has been designed for identification of (Norwegian) speech in ARUs106 - the 
Python code is freely available online. Another option is to set a recording schedule of 
intermittent short clips that would break up any unintentionally recorded conversations 
into unintelligible snippets. However, this may have a significant impact on the detection 
of target sounds or temporal analysis of the soundscape. 

Ultimately, it is better to deal with privacy issues by avoiding collecting human speech 
and warning of the risk of being recorded at the deployment stage, than it is to deal with 
once collected. We are not in a position to advise on the legality of storing PAM data in 
respect to the UK General Data Protection Regulations, and practitioners should take 
care to ensure they are fully compliant.
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Figure 4.4. Hay meadows and wet grassland often have strong dawn choruses dominated by 
Skylark Alauda arvensis, Reed Bunting Emberiza schoeniclus, and Sedge Warbler Acrocephalus 
schoenebaenus. Credit: Oliver Metcalf.

https://github.com/NINAnor/ecoVAD


Chapter 5: Targeted Monitoring
Once data is collected and been subject to initial pre-processing, there are a range of available 
analysis options. This chapter deals with those methods that deal with detecting and identifying 
specific ecologically relevant signals, such as bird calls, within the audio data (Section 5.1 Acoustic 
analysis), and how they can be used to gain ecological insight (Section 5.2 Ecological analysis). 
The chapter is labelled ‘Targeted monitoring’, as many of the methods can be applied equally to 
individual target species, multiple species, or ecologically relevant anthropogenic sounds, such as 
gunshots.

5.1 Acoustic analysis

5.1.1. Manual analysis
In many cases, the most accurate and efficient method for obtaining useful 
ecological data from audio files will be manual analysis. This is especially true if 
community data are required (e.g. data comparable to point counts conducted 
in the field), or if data on the detection and non-detection of a single species 
are required with a high degree of accuracy. In these cases, the effort involved 
in manually reviewing data is likely to be less than that of training a highly 
accurate single-species automated classifier, or reviewing predictions of off-
the-shelf multi-species classifiers. 

The process for retrieving specific data from audio files is similar to that 
described in Chapter 3.1, visualising audio files using spectrograms and then 
listening to them as necessary to identify signals of interest. Labels, such as 
species identifications or call types, can be attributed to the relevant section 
of the spectrogram, then used later in ecological analysis. All of the software 
listed in Chapter 3.1 support labelling of specific sections of the spectrograms 
and would be suitable for this type of manual analysis. Although this process 
requires considerable human input, visualising the data with spectrograms 
can speed up analysis considerably for experienced practitioners. Birdwatchers 
using ARUs to record nocturnally migrating birds over their gardens report 
being able to analyse a night’s recording of eight hours with average migration 
activity in about one hour, identifying and labelling all significant bird 
vocalisations107. 

 

Figure 5.1. Three vocalisations from a rare breeding bird, the Spotted Crake Porzana 
porzana, recorded during a targeted PAM survey of the Lower Derwent Valley NNR on 
05/04/2022.
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Given the relatively high amount of human effort required in analysing audio 
data this way, the benefits compared to traditional field-based surveys may 
be less immediately obvious. However, manual analysis of species data from 
recordings is likely to produce better assessment of community species 
richness in birds compared to conducting point-counts in the field19, detecting 
an average of 10% more species. Additional benefits include allowing analysis 
to be undertaken at any time (e.g. outside of busy fieldwork periods), can allow 
the same observer to analyse temporally synchronous data (i.e. effectively 
undertake multiple surveys simultaneously) thus reducing inter-observer 
error, and allows for repeated analysis by other observers to correct for errors. 
Importantly for commercial enterprises, it also provides a fully evidenced 
analysis workflow, should the presence or absence of certain species be 
queried later. 

 

5.1.2. Automated and semi-automated approaches

Automated approaches to detecting and in some cases identifying signals of 
interest are potentially time saving alternatives to manual analysis. There are 
a range of approaches available, varying in complexity and output, ranging 
from simple algorithms used to detect when any sound event occurs, right up 
to cutting-edge neural networks to detect and identify the songs of multiple 
species from across the globe, that push at the boundaries of deep-learning 
development. 

5.1.3. Sound event detection

When choosing an approach to take, it is important to be aware of the 
difference between sound event detection models and classification models. 
Sound event detection models are useful when looking for rare sound events 
during long quiet periods, or when the majority of sounds are of interest and 
it is valuable to isolate them. These are often relatively simplistic approaches 
that look for sounds that pass predefined thresholds for amplitude or signal-
to-noise ratio (e.g. Raven Pro91, Kaleidoscope Pro51, Tadarida D108), but can 
be parameterised to only apply at certain frequencies or with minimum or 
maximum time intervals. Given their simplicity, these sorts of models, which 
exist on a range of acoustic analysis software, can be quick to configure and 
fast to apply to large quantities of data. They can be an effective way of quickly 
removing large quantities of audio that is not of interest, with reasonable 
confidence. What they do not do, however, is identify the detected sounds as 
belonging to any species or source. 
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5.1.4. Template matching

One method to obtain detections of an identified sound type is through 
template matching. In this method, the user provides one or more templates 
of the desired sound, and an algorithm compares the template to the dataset 
provided. The output is then a series of detection periods and sometimes 
frequencies, with an associated confidence score. Users can determine their 
own thresholds for accepting a confidence score as a true detection. This 
method has distinct advantages over more complex algorithms as it requires 
limited user input in training the algorithm, doesn’t require a high level of 
technical skill to undertake, and is conceptually simple. However, template 
matching can be quite slow to run over large quantities of audio data, and 
is only likely to be highly accurate for stereotyped calls in relatively simple 
acoustic environments109. Although, the process can  be applied to less 
stereotyped calls or noisier environments; in most cases users choose to set 
a relatively low threshold to avoid missing too many calls, then manually 
reassess the detections produced to eliminate false positives. This can still be 
quite time consuming, but potentially less so than manually assessing all of 
the data, or building a more complex classification algorithm110.

Figure 5.2. After the sun sets wetlands can come alive with bird and amphibian 
sound – passive acoustic monitoring offers a great way to monitor this.
Credit: Oliver Metcalf.
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There are several methods available for template-matching analysis. The 
most user-friendly is the Arbimon online platform35, which allows data to be 
uploaded, stored, and analysed in various ways, including template matching, 
free of charge. Arbimon uses a slightly more complex form of template 
matching, in which initially provided templates are then used to train a 
random-forest detection model - although this process requires very little 
user input beyond the initial template111. This type of template matching has 
been used in academic ecoacoustic studies successfully across the globe112,113. 
However, uploading large quantities of audio data to the web can be time-
consuming, and it may not be suitable for commercial or sensitive projects 
due to the somewhat opaque policies about data re-use. It is however an 
interesting integrated analysis platform that is worth exploring as an analysis 
option, especially for those without coding skills in R or Python, or the time to 
develop their own pipelines.

For those with the capacity for basic coding in R, development of a template-
matching pipeline is straightforward thanks to the monitoR package114. There 
is a tutorial video on basic setup of such an approach by Danielle Texeira 
available on the UKAN+ Youtube page115.  Again, this approach has been well 
used in academic studies globally, and there are several papers outlining ways 
to optimise the use of such an approach,116,117. 
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Figure 5.3. Targeted passive acoustic monitoring can be a good way to 
establish the presence of rare or scarce nocturnal and crepuscular species 
such as this Short-eared Owl Asio flammea. Credit: Oliver Metcalf.

https://www.youtube.com/watch?v=zd5eG30TWnA&list=PLtnYW6qlPmyhiqGw78P7MnY1-TcI2hpfH&index=4


5.1.5. Machine learning

Contemporary approaches to machine learning for acoustic analyses include 
supervised and unsupervised learning. Supervised machine learning relies 
on labelled input and output training data, whereas unsupervised learning 
processes unlabelled or raw data, such as the clustering algorithms used in 
Kaleidoscope51. 

Early supervised learning models are a type of machine-learning algorithm 
that use acoustic features identified by the user to train a model capable 
of distinguishing between pre-specified  classes. The algorithm is provided 
with large quantities of training data, from which it can ‘learn’ the patterns 
in the provided features. The trained model then makes predictions on the 
probability of the new data belonging to a particular class. For instance, 
imagine a simple soundscape in which only two species sonified. Someone 
looking at the respective calls could observe that there is a great deal of 
difference between the two species in the rate they repeat their calls, and the 
pitch at which the calls are given. The algorithm would therefore be provided 
with measurements of inter-syllable gap and frequency from calls belonging 
to each class (species), and a model trained to predict the probability of which 
species the calls emanated from. Generally in complex acoustic classification 
tasks, many more features are selected. These types of models have been 
used with reasonable success for automated classification of call types, but 
are generally being used less as they are out-performed by deep-learning 
methods. 

Figure 5.4. Small mammals such as this Pygmy Shrew Sorex minutus often make 
sound, so can be a good target for acoustic monitoring, although some of the sounds 
can be beyond the range of human hearing. Credit: Oliver Metcalf.
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An overview of many of the software options that use machine-learning 
approaches (amongst others) is available in Table 4 of Priyadarshani et al., 
(2018)118. We do not go into great detail here on these programs as for most 
people interested in ecological sound classification, the BirdNET app119 
or Kaleidoscope Pro51 programs will likely be the best approach, and are 
discussed in more detail below. 

For those interested in having more control over the classification process, 
the Tadarida toolbox108 has been used successfully in Europe to classify a 
range of bird, insect, and small mammal sounds, although is most effective 
in ultrasonic frequencies. In many cases developing bespoke pipelines in R 
or Python can be most effective. R in particular has several packages that can 
help with this, in particular gibbonR120 has many useful functions - but it is also 
possible to extract acoustic features using a package such as warbleR121, before 
using a specialist machine-learning package such as caret122 to perform the 
classification.  

Clustering algorithms are not provided with training data.  Instead a sound 
event detection method is undertaken first, after which the clustering 
algorithm groups sounds by similarity. In theory, as call variation should be 
greater among species than within species, if configured correctly these 
algorithms should result in clusters of single species calls that can then be 
identified by an ecologist.  

One of the  most popular commercial software for ecoacoustic analysis, 
Kaleidoscope Pro51 uses clustering. Kaleidoscope Pro can quickly analyse 
large quantities of data, and is user-friendly. In many cases, it is likely to be the 
optimum species-specific analysis software for commercial projects, although 
it is expensive and still requires ecological knowledge to identify sounds once 
they are placed in a cluster. 

5.1.6. Deep learning

Deep learning neural network models follow the classical machine learning 
paradigm, but  instead of requiring a primary feature extraction step the raw 
audio (or more commonly its spectrogram) is presented as input and a high 
dimensional representation of the audio is learned. 

Supervised, unsupervised and increasingly semi-supervised and reinforcement 
deep learning paradigms exist. The most popular approach to classification 
of acoustic data are convolutional neural networks123. Large quantities of data 
labelled with a single species or taxa (binary classification) or for multiple 
species (multi-label classification) are provided. The algorithms are able to 
independently ‘learn’ which features are most relevant in telling them apart 
from other sounds. The principle is that this learned representation can 
generalise to new data. Convolutional neural networks have produced the 
best accuracy metrics for automated classification of any of the methods 
mentioned here124. Deep learning algorithms can be effective in quickly 
and accurately assessing large quantities of acoustic data, and is the only 
classification method that can realistically be fully automated. However, 
there is a high level of technical knowledge required to initially train one 
of these algorithms, and the process of finding, identifying, and labelling 
enough appropriate training data to create an accurate classifier can be very 
time consuming. For those with basic Python skills, the OpenSoundscape125 
package offers a relatively straightforward way to build classification models, 
and has a very clear user guide on how to do so.
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An alternative to training classifiers for individual use is to use pre-trained 
classification models built by others and made available for use. As the 
production and use of deep-learning models is still relatively new in 
ecoacoustics, the number of open-source models is limited, but is likely to 
increase. Fortunately one of the few available, BirdNET developed by Cornell 
Lab of Ornithology119, works for almost all European bird species and is freely 
available to download as a standalone program. These multiclass models have 
advantages, they only need to be run once over the data to obtain a complete 
list of all species present, but also have disadvantages - they can produce some 
obscure false predictions, and can in some cases be less accurate than models 
trained for one or a few species. Nevertheless, the freely available and user-
friendly nature of the software is likely to make BirdNET a game changer for 
analysis of acoustic data for birds, although currently it is only available under 
a non-commercial Creative Commons licence. Note also that BirdNET is most 
accurate when using the feature that allows it to be constrained by local lists of 
birds generated from eBird.

 

Figure 5.5. A comparison of manual annotation (light blue) vs BirdNET classification 
(purple) of 1 minute of audio from the Lower Derwent Valley NNR at 04:00 on 4th 
May 2020. Manual annotations were made in Raven Pro by Oliver Metcalf and took 
approximately 6 minutes. BirdNET was run through the desktop graphical user 
interface, was given the latitude and longitude of the recording, the week of the year, 
with overlap set to 2 seconds, sensitivity of 1.0, minimum confidence of 0.1 and 4 
threads and took 5.6 seconds. The spectrogram was produced in Raven Pro. 

Similar automated classification algorithms are available commercially for 
bats, and through the BTO Acoustic Pipeline126 for a range of bats, small 
rodents, and insects. The BTO Acoustic Pipeline is free for small quantities of 
non-commercial audio analysis, but a paid-for model is available for larger 
and/or commercial projects, and provides a very good way to obtain a suite 
of accurate automated identifications of non-bird species without building 
individual classification algorithms. However, as the Acoustic Pipeline was 
originally designed to process ultrasonic data it requires data with a sampling 
rate of 192 kHz or higher (recommended at 384 kHz for AudioMoths), so it may 
not be suitable for long periods of monitoring, as SD cards in ARUs would fill 
rapidly. 
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Finally, for those with access to experienced data scientists, it is possible to 
develop your own deep-learning classification models. Labelling enough 
training and test data to develop these models will represent a significant 
start-up cost in terms of time and effort, so this approach is likely only cost-
effective if it is to be applied to very large quantities of acoustic data over 
a long period, potentially for multiple species, and when a high degree 
of accuracy is required. The development of deep-learning models for 
ecoacoustic classification is a field of active research in computer science, and 
as such the field is developing rapidly - it is worth undertaking a review of the 
latest academic literature in the field before undertaking any such projects. 

5.1.7. Assessing classification performance

When using automated classification, one of the most important questions 
to answer is how accurate the model is in its predictions. Unfortunately this is 
not straightforward to answer, and even the most user-friendly classification 
software do not offer reliable estimates of model accuracy. Standard machine-
learning methods for assessing classification performance involve splitting 
the labelled dataset in ratio of 80:20 or 70:30, and using the larger sample 
to train the algorithm and the smaller set for testing model performance. 
Unfortunately this approach does not translate very well for ecoacoustics, 
as the labelled data are often highly unrepresentative of the acoustic data 
it will be applied to, because the training data needs lots of examples of the 
target species calls, but these will likely be far rarer in the natural environment. 
Consequently, when using automated classification, it is necessary to budget a 
substantial amount of effort to manually assess an independently sampled test 
dataset. Knight et al., (2019)127 provide an excellent set of guidelines for which 
accuracy metrics should be used, and how to benchmark results. 

Note that automated classification models can be very sensitive to different 
soundscapes, so if the classifier is applied to data taken from large spatial 
or long temporal scales, it is also a good idea to check for variation in 
classification performance across the study data - some methods for how 
to do so are provided in Metcalf et al., (2022)128. There is an additional need 
for caution when using ‘closed’, off-the-shelf, sound classification tools. 
Where the training data and call/ sound features used to train the models 
are not published,  it is not possible to assess how the algorithm is making 
classifications and what the potential biases or errors might be, which 
ultimately will affect the inference.
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The metrics used to assess model performance will be dependent on the 
objectives of the particular study being undertaken, and the use to which the 
classification data will be put. In ecoacoustic studies, precision (the proportion 
of correctly predicted presence amongst all predicted presence) and recall (the 
proportion of all true presences which are predicted) are generally considered 
most useful. When calculating accuracy metrics it is commonplace to use an 
initial confidence score threshold of 0.5, so that for any confidence scores 
below 0.5 the target species is predicted absent, and above 0.5 the species is 
predicted as present. If initial accuracy metrics have not achieved the desired 
level of accuracy, there are two methods to remedy it. The first is to retrain the 
model, using more (or better/ augmented) training data. However, this can be 
time consuming, and it is likely to be more effective to first try to adjust the 
confidence score threshold to achieve an optimal trade-off between precision 
and recall. Assessing precision-recall trade-offs at different thresholds can 
be done formally by building precision-recall curves (there are various R and 
Python packages available to do this, such as ROCR129 and PRROC130) using the 
test dataset, or less formally by taking stratified subsamples from across the 
range of predicted confidence scores post-classification - an approach that 
may be particularly useful for pre-built classifiers like BirdNET.

Figure 5.6. Caledonian pine forests hold a range of biodiversity suitable for passive 
acoustic monitoring. One of the rarest – Capercaillie Tetrao urogallus – lek in early 
spring and are readily disturbed by human presence, autonomous recorders have 
proven to be a good alternative monitoring method. Credit: Oliver Metcalf.
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Very large studies generating large numbers of positive predictions will require 
a fully automated workflow, it is likely to be necessary to set a high confidence 
score threshold to minimise false positives (i.e. predicted presences when the 
target species is in fact absent). Precision scores of >0.9 and recall of >0.5 are 
probably good targets for most studies. The disparity between these scores 
is because when setting thresholds, we recommend focussing on achieving 
a low number of false positives (i.e. the algorithm predicting species present 
when in reality it is absent) at the expense of missing some true presences 
(i.e. prioritising precision over recall). This is because i) species usually vocalise 
multiple times, often in quick succession and most classification algorithms 
give predictions over short timescales, missing the presence of a species in one 
3 second clip is mitigated by detecting it in the next, and ii)  falsely assuming 
a species is present when it’s not is generally more detrimental to ecological 
studies than missing presence. To mitigate this further, it can be effective to 
summarise classifications over time - e.g. turn multiple predictions from three 
second files into a single prediction of presence over ten minutes. 

For smaller studies, when all cases a target species is predicted to be present 
in can be manually assessed, the inverse approach can be taken. This process 
is known as semi-automated classification. Here, the threshold is set low 
to maximise recall, so that very few true presences are missed. This will 
necessarily produce a higher number of false positives, but these are then 
weeded out by manual assessment. This will result in a dataset with fewer 
classification errors at the expense of greater manual labelling effort. Other 
than in the cases of small datasets, this approach is likely to be desirable for 
studies in which it is important to know exactly how often a species vocalises 
or is present, or when a classification model performs poorly overall.

5.2 Ecological analysis

5.2.1. Presence and absence

The most basic ecological data obtainable from PAM is the presence or 
absence of certain species. In many cases, especially when dealing with 
wildlife legislation, even a single data point confirming species presence can 
be critically important. PAM can be a very good choice for this sort of survey, 
and has been proven effective for a range of species globally131,132,133,134. In 
particular, if only a single presence is required, an automatic workflow heavily 
weighted in favour of precision presents a potentially very efficient way of 
obtaining confirmation of species presence. When attempting to establish 
absence, the opposite approach should be taken, and either manual analysis 
should be adopted, or a semi-automated approach heavily favouring recall. 
It is quite clear that for many vocal species, such as those that are elusive, 
nocturnal, live in difficult to survey habitats such as reedbeds, or are at 
low density - well-designed acoustic surveys over long-durations can be 
more effective at confirming presence than manual surveys. Given this, it is 
unfortunate and somewhat illogical that the UK Bird Survey Guidelines135 
advise that PAM should not be used to establish species absence.
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5.2.2. Community analysis

A list of species from a location is likely to be high on most ecologists’ lists for 
desirable products from an ecoacoustic study. A list of species is relatively easy 
to generate, either through manual assessment of the data or by running a 
multi-species classifier such as BirdNet. However, acoustic data is not a census 
of the species within an area - ARUs may not cover the entire area, recording 
schedules may not be continuous, or recordings may be subsampled 
for manual analysis after collection. Further, species will not be equally 
represented in the acoustic data, as some make more sound, or are easier to 
detect. It is often therefore desirable to assess how representative any species 
list is of the whole community. 

There are several methods that can be used to assess the completeness of the 
species list, although this exercise is somewhat circular. One very informal way 
to do so is to compare the generated list to pre-existing lists of species present 
in the area at similar times of year, using data from local recording schemes, 
and/or from online citizen science repositories such as eBird136. This process 
can help to ensure that a disproportionate number of species aren’t being 
missed and also identify any species which may be erroneously identified from 
the acoustic dataset, but are not present in other datasets. To more formally 
assess survey completeness, species accumulation curves can be easily and 
quickly built in R using the iNext137 or vegan138 packages, in which the number 
of species found is predicted by the number of survey samples used. Once 
the accumulation curves plateau, more survey effort is unlikely to result in 
the detection of many more species, so it is reasonable to assume the species 
list obtained from that much survey effort is representative of the entire 
community present. This can also be used to identify that more survey effort is 
needed if accumulation curves do not plateau.
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Figure 5.7. A Fronter Labs Bioacoustic Recorder deployed in a Spotted Crake 
Porzana porzana territory to help monitor this rare, nocturnal, and elusive wetland 
breeding species. Credit: Oliver Metcalf.

https://ebird.org/home
https://cran.r-project.org/web/packages/iNEXT/vignettes/Introduction.pdf
https://cran.r-project.org/web/packages/vegan/vegan.pdf


5.2.3. Occupancy models

Occupancy models estimate the probability of species occupying a site, 
in relation to environmental covariates. Importantly, occupancy models 
estimate detectability from a structure of multiple visits, and can infer species 
occupancy in suitable habitat, even if the species is not detected at a site. 
Acoustic data can be divided into discrete, independent, temporal units, and 
then treated as ‘repeat visits’ to a site. They have been widely used as a method 
to analyse data derived from acoustic studies both in the UK where they have 
been used to study rare heathland bird species139 and abroad for elusive forest 
passerines140,141. They are well suited to acoustic data as they take presence/
absence data as input and allow for imperfect detection of the sort caused by 
classification error or silent individuals. They can also be extended to multi-
season or dynamic occupancy models to allow for understanding of changes 
in species occupancy, which are especially useful in long-term monitoring142,143. 
Additionally, they can be used for multi-species models to investigate the 
impact of co-occurring species, which may be useful in monitoring the impact 
of reintroduced or newly occurring species at rewilding sites or conservation 
projects. There are various R packages for fitting occupancy models, the most 
widely used of which is ‘unmarked’144. There are also an increasing number of 
papers looking at methods to deal with the sort of errors caused by automated 
classification workflows for acoustic data145.

5.2.4. Localisation

Localising acoustic signals has a multitude of applications spanning: non-
invasive behaviour monitoring, abundance counting, and locating the 
position of chainsaws used in illegal logging146 or gunshots64. As with the 
hardware, there are few off-the-shelf software solutions for sound localisation. 
Fortunately, there is an excellent review of the approaches taken to sound 
localisation so far, which should give anyone wishing to undertake such 
an analysis a good starting point, and an idea of the analytical challenges 
they are likely to face24. Increasingly open localisation processes are being 
released, often with user-friendly interfaces e.g HARKBird147, and ODAS148. 
There are also functions and tools in the Python packages scikit-maad102 
and OpenSoundscape125 likely to be useful to anyone attempting sound 
localisation. 

5.2.5. Density/Abundance

Another highly desirable output from acoustic data is obtaining a measure of 
species abundance or density - which was recently reviewed149 and would be 
recommended reading for anyone wanting to explore the topic. . Estimating 
abundance or density is not a simple task, and whilst there isn’t yet one proven 
method successful in all scenarios, there are three general approaches.

The first is to use vocal activity rate. The second is to use localisation of sounds 
and complex statistical approaches. The third is to use individual identification. 
Each of these has their own strengths and weaknesses and currently each 
is only appropriate for a few species or studies that meet the stringent 
assumptions.
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Vocal activity rate150 is predicated on the idea that if individual animals vocalise 
at a consistent rate, then vocalisations from a species are linearly related to 
the number of individuals present. The challenge with this simple approach is 
that accurate information is needed on the average sound production rate of 
individuals (or cue rate)151. The approach assumes that average cue rate is the 
same between individuals and that detectability is the same at different sites.  
Much of the development of this work has been with marine mammals152. 
In the terrestrial realm, this approach may be applicable to some species, 
such as amphibians and territorial bird species during the breeding season. 
Importantly, it has also been paired with template matching for classification 
of Forster’s Tern Sterna forsteri in the USA153 and automated classification 
for Cory’s shearwater Calonectris borealis calls on the Azores to successfully 
estimate the size of nesting colonies154  - a potentially very valuable use in 
the UK for monitoring potential development impact on colonially nesting 
species, or the effects of rat eradication. For other species, it seems unlikely 
to be successful or requires a great deal further research - for instance for 
nocturnally migrating flocks of birds where call rate is influenced by a wide 
range of factors155, or large flocks of wintering geese where a saturation point 
in call rate seems likely to be quickly reached.

A word of caution. The approach outlined above can be used to estimate the 
number of individuals within the area surveyed by the acoustic sensor and 
associated identification algorithms. However, this is not an estimate of density 
without a concurrent estimate of the area surveyed. Therefore, estimating 
the density of a species requires more complex methods to estimate the area 
surveyed. With colony-nesting species, it may be straightforward to be sure 
that the entire colony could be detected by the sensors. However, in wider-
landscape situations it is more complicated. In these scenarios, the cue-
counting method above can be used to estimate the number of individuals 
detected at each sensor.  Without this, the cue-counting approach can be 
assumed to estimate relative abundance at different sites, but not to estimate 
density. 

A second approach involves the localisation of calling individuals156,157,158. These 
locations are then used to estimate distances and distance-sampling methods 
are applied. Or alternatively, the localisation is used to identify the same sound 
detected on multiple sensors and spatially-explicit capture-recapture methods 
are used. Both of these are complex approaches that have only been successful 
on a small number of studies, with bespoke analytical development for each 
situation. Anyone looking to adopt such an approach in the UK is, for the time 
being, likely to need to develop their own bespoke methods. However, some 
academic studies have been able to successfully localise passerine species in 
North America and estimate density, and the scikit-maad package102 in Python 
has several useful functions to facilitate the analysis process.

Finally, some species have calls or songs that are unique to individuals and 
thus estimate abundance by knowing the identity of the individuals present. 
In some cases, such as Cetti’s Warbler159 and Tawny Owl160, the songs contain 
unique phrases or ordering that make this process feasible using PAM, albeit 
time-consuming. In other species, the individual differences are likely to be 
subtle and require better quality recordings than are standardly collected with 
ARUs equipped with omnidirectional microphones. As with the first approach, 
without estimates of area sampled, this method estimates species abundance, 
but not density.
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Chapter 6: Soundscape Analysis
Soundscape analysis considers the whole soundscape, combining biophony, geophony and 
anthropophony. In doing so, soundscape analysis gives space to less charismatic, unheard, or 
understudied species, and can also be used to monitor the manner, extent and perhaps impact 
of anthropophony. Currently, soundscape analysis is primarily conducted through the use of 
acoustic indices - a family of methods used to quantify variation in acoustic energy and relate that 
variation to the sonic environment.

Acoustic indices have been used to monitor species richness161,162, community composition163, 
the relative contributions of biophony, geophony and anthropophony to a soundscape164, 
approximating species abundance165, as means of more intuitively visualising soundscapes100, or 
even as a means of mapping an area’s wildness166. However, acoustic indices have yielded mixed 
results. A recent meta-analysis167 exploring their association with  biodiversity highlighted a weak 
relationship and highly variable effect sizes between many of the most commonly used acoustic 
indices and species diversity metrics. 

Increasingly, deep-learning based methods are being used as an alternative to acoustic indices 
for soundscape analysis. Soundscape descriptors built from deep-learning embeddings make 
for informative visualisations and are successful predictors of landscape, biomass, and species168. 
Deep-learning embeddings have been shown to outperform acoustic indices on landscape 
classification tasks and are more robust to experimental variation80,168. However, they can be 
complicated to generate, and their opaque nature makes interpretation difficult (see below).

6.1. Introduction to acoustic indices
Soundscape analysis with acoustic indices represent an entirely different analysis 
paradigm to species-specific analyses. This approach pre-supposes that soundscapes 
from different locations, habitats, and ecological communities are different and that 
those differences are possible to quantify using statistical measures of acoustic energy to 
provide ecological information that may complement species data. The varied statistical 
methods of measuring variation in acoustic power are collectively termed acoustic 
indices161.  Of the dozens that have been proposed, most entail calculation of power 
ratio between multiple frequency and/or time bins across a recordings, creating more 
nuanced versions of conventional sound pressure and spectral density metrics. This 
approach has been increasingly popular in the academic literature, used both as a means 
to characterise soundscapes and the corresponding landscapes, and in some situations 
as proxies for traditional biodiversity metrics such as species richness and species 
diversity169.

There are a range of reasons for supposing that the spectro-temporal structures of 
a  soundscape would be reflective of its ecological components. The most developed 
theories in this field are the Acoustic Niche Hypothesis and the Acoustic Adaptation 
Hypothesis169. The Acoustic Niche Hypothesis170 suggests that species that have evolved 
together will also have evolved their own niche in time and frequency space, in which 
they can communicate clearly to conspecifics without interference from other species. 
For example, birds may call at frequencies lower than more dominant cricket species, 
whilst other species may avoid vocalising when the avian dawn chorus is at its peak. 
The theory posits that a soundscape with fewer quiet gaps in frequency or time will be 
reflective of higher species richness, as more species have co-evolved to fill the space. 
Conversely, degraded habitats will show empty gaps in the soundscape, which represent 
the niches of species no longer present. The Acoustic Adaptation Hypothesis171 suggests 
that species adapt their vocalisations to the habitat they occur in to maximise how far 
the signal is carried. Think for example of the high-pitched and sibilant calls of species 
such as Common Kingfisher Alcedo atthis, Grey Wagtail Motacilla cinerea, 
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and White-throated Dipper Cinclus cinclus, as species that have all evolved alongside 
noisy fast-flowing water. This convergence of calls due to the impact of habitat gives 
the soundscapes of different areas and habitats unique and recognisable properties. 
However, it is worth noting that both of these theories are controversial172,173, and there is 
evidence both for and against them. 

6.2. Acoustic Analysis
Soundscape analysis has several major benefits over species-specific analyses. It is 
generally easy and quick to calculate acoustic index values, and computationally 
relatively inexpensive. Additionally, taking a soundscape approach reduces the need 
for complex algorithms or species identification experts. In combination, this can be 
an attractive proposition. However it is worth noting that what is gained in ease of 
application is somewhat lost in ease of interpretability - it is not always clear what 
differences or changes in acoustic index values mean ecologically.

Careful use of acoustic indices is therefore necessary. One of the most effective uses of 
acoustic indices is to ‘characterise’ soundscapes174,175. Whilst all soundscapes are unique, 
those coming from similar places, times, and habitats tend to have similarities. Indices 
can be used to quantify these similarities and differences, to identify change, or to make 
predictions about the environment in which the recordings were made, without needing 
to necessarily understand the underlying causal mechanisms. Indices are also commonly 
used as proxies for traditional biodiversity metrics, although this approach may only be 
reliable under certain conditions (see section 6.5 for more details) and it is necessary to 
ensure there is a great deal of ground-truthed data also available.

Acoustic indices range in complexity - the most basic are simple audio descriptors (e.g. 
zero-crossing rate, counts of acoustic events, background noise levels), whilst others 
have been designed heuristically to capture the intensity of biophony, ratio of biophony 
to anthropophony or distribution of energy across the spectra under the assumption 
that this may reflect composition of the acoustic community.

Acoustic indices are not a magic solution and must be applied and interpreted in 
context. For example, a measure of the number of acoustic events in an urban park 
is unlikely to say very much at all about the number or types of non-human species 
present in the park as it is likely to be dominated by anthropogenic sounds. However, 
there may likely be a relationship between the number of acoustic events and the 
number of several seabird species breeding at a colonial nesting site, for instance176. 
More heuristic indices may reflect some aspect of ecology. However,  it is necessary to 
check the assumptions of the individual index to ensure that the circumstances it was 
designed to reflect pertain to the data it is applied to, and “sound-truthed” against some 
form of manually assessed data.
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Index and 
original 
reference

Index description Soundscape patterns

Acoustic 
Complexity Index 
(ACI)177

Determines the difference in amplitude between one time 
sample and the next within a frequency band, relative to 
the total amplitude within that band. 
The concept underlying this index is that biophony is often 
of variable intensity, whilst anthrophony such as engine 
noise is generally constant. Acoustically rich habitats may 
produce low ACI values if intensity does not vary greatly 
over time even if there are multiple contributing sound 
sources. It is also impervious to constant biophony such as 
tropical insect noise.

High values might indicate storms, intermittent rain drops 
falling from vegetation, stridulating insects, or high levels 
of avian biophony.

Low values are associated with constant noise that fills the 
whole spectrogram, for example from loud technophony or 
excessive cicada chorus.

ACI value is cumulative; longer recordings will give higher 
values. Taking a mean is sensible.

Acoustic 
Diversity Index 
(ADI)178

Derived by calculating the Shannon entropy of the 
distribution of acoustic energy among frequency bands. 
ADI ranges from 0 to the log of the number of frequency 
bins used.
ADI will increase with greater evenness of energy among 
frequency bands. An even signal will give a high value 
(could be noisy across frequency bands or completely 
silent) and a pure tone (i.e. all energy in one frequency 
band) will be closer to 0.

High values associated with high levels of geophony and 
technophony, which fill the spectrogram with noise, or 
from very quiet recordings with little variation among 
frequency bands.

Lowest values reflect dominance by a narrow frequency 
band, such as nocturnal insect noises in the tropics.

Acoustic 
Evenness 
(AEve)178

Derived by calculating the Gini coefficient of the 
distribution of acoustic energy among frequency bands. 
Values lie between 0 and 1. Higher values indicate greater 
unevenness among frequency bands, i.e. most of the sound 
is in a restricted frequency range.

Inverse of the patterns in ADI. High values identify 
spectrograms dominated by a narrow frequency band.

Low values indicate many evenly-occupied frequency 
bands, although this can also occur in near silent 
recordings.

Activity (ACT)100 Proportion of values in the noise-reduced decibel envelope 
that exceed 3 dB.

Higher values indicate greater acoustic activity

Acoustic Space 
Use (ASU)179

A matrix derived by calculating the number of time-
frequency bins (of given duration and frequency bin size) 
that are ‘active’ -e.g. surpass a predetermined amplitude 
threshold.

Higher values reflects the times and frequencies when 
acoustic activity is high

Background 
noise (BGN)100

The mode of the sound energy distribution of the 
waveform envelope.

Higher values indicate a greater level of acoustic energy, 
such as during rainstorms.

Bioacoustic 
Index (Bio)180

Derived from the sum of the mean amplitudes of individual 
frequency bands between 2 – 8 kHz minus that of the 
quietest frequency band.

High values are produced by recordings with high 
amplitude and greater disparity between loudest and 
quietest frequency bands.

Low values arise when there is no sound between 2 and 8 
kHz.

Spectral entropy 
(Hs)163

Calculated from the relative mean amplitude of individual 
frequency bands of a spectrogram. Uses the Shannon 
diversity index on those values as a measure of evenness. 
Scaled to range between 0 and 1.

Larger values imply a more even distribution of acoustic 
energy among frequency bands.

Temporal 
entropy (Ht)163

Calculated with the relative values of the amplitude 
envelope. Uses the Shannon diversity index on those values 
as a measure of evenness. Scaled to range between 0 and 1.

Larger values imply greater temporal evenness.

Acoustic entropy 
(H)163

Derived by multiplying spectral entropy (Hf) and temporal 
entropy (Ht), again scaled to range between 0 and 1. Within 
recording sets this tends to be dominated by Hf.

Higher values reflect greater evenness of amplitude among 
frequency bands (from either noisy or completely silent 
soundscapes). Lower values indicate acoustic energy 
concentrated in a narrow frequency range.

Events per 
second (EVN)100

Number of times per second the noise-reduced decibel 
envelope crosses a 3 dB threshold. Given as the mean per-
second value over the recording.

Higher values indicate more frequent changes in 
amplitude.

Table 6.1. An overview of some of the most commonly used acoustic indices adapted from Bradfer-
Lawrence et al (in prep).
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Median of the 
amplitude 
envelope (M)181

Louder recordings will give higher values, and so reflect 
noisier soundscapes.

High values associated with high amplitude events such as 
storms.

Low levels from very quiet recordings.

Normalised 
Difference 
Soundscape 
Index (NDSI)164

This index relies on the theoretical frequency split between 
anthrophony (1 – 2 kHz) and biophony (2 – 8 kHz) 
(although this may not hold in many systems, see text).

NDSI is calculated from the power spectral density of the 
largest biophony band against that of the anthrophony 
band: (bio - anthro) / (bio + anthro)

NDSI ranges from -1 to +1, with +1 indicating no sound in 
the anthrophony range.

High values reflect large amounts of sound somewhere in 
the 2 – 8 kHz range, with minimal noise between 1 – 2 kHz.
Low values associated with more noise in the 1 – 2 kHz 
band.

Number of 
frequency peaks 
(NP)182

The number of individual peaks in the mean amplitude 
spectrum of a recording, scaled between 0 and 1. A peak is 
defined as having an amplitude slope > 0.01 and being > 
200 Hz from the next.

Higher diversity of sounds should generate a higher 
number of peaks. Although in highly saturated 
soundscapes, there may be very few peaks if these sounds 
overlap.

Signal-to-Noise 
ratio (SNR)100

The difference between the maximum dB value in the 
decibel envelope and the Background Index (see above)

Higher values should reflect a transient sound event with a 
much higher amplitude above the background noise level.

Soundscape 
Saturation 
(Sm)183

The proportion of frequency bins that are acoustically 
active per minute. Derived from the power (maximum 
amplitude in dB) in each frequency band minus the modal 
amplitude of that same frequency band. If these values 
exceed a threshold then the band is active.

Higher values indicate a more active spectrogram, the 
soundscape is more saturated.

6.3. Computation of acoustic indices
Computing acoustic indices is relatively straightforward, so it is somewhat surprising 
that there are not more user-friendly programs available to calculate them. The Analysis 
Programs software package from Queensland University of Technology Ecoacoustics 
Lab101 provides a wide range of index calculations, whilst Arbimon35 offers some 
soundscape calculations akin to acoustic space use. Kaleidoscope Pro51 offers a small 
number of simple acoustic descriptors, but none of the more commonly used heuristic 
indices.

Fortunately, it is simple to calculate acoustic indices using the R or Python coding 
languages – an index value for a single sound file can be generated in just two lines 
of code. The first line to read in a sound file, the second to calculate the index. The 
excellent seewave94 and soundecology184 packages in R and the scikit-maad package102 
in Python offer functions that will compute a wide range of the most commonly used 
acoustic indices very simply. For other less common indices code is often freely shared 
as supplementary information in associated scientific publications. In general, acoustic 
indices are calculated over 1 minute sound files, with any indices that generate values at 
a finer temporal scale averaged to that duration, and that is the recommendation here. 

Technically it is possible to calculate indices over longer time periods. If your ecological 
hypotheses or questions motivate this, it can be advantageous to calculate variance, 
median, minimum and maximum as well as mean for frame-based indices (ACI, RMS, 
ZCR etc.)  Note that this will reduce the sample size of the data collected, and likely slow 
down computation time as reading in and calculating indices over larger sound files 
generally takes disproportionately longer, and could use up a high proportion of RAM 
memory on smaller computers. 
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Figure 6.1. An example of the advantages and disadvantages of acoustic indices with real 
data. The top panel shows acoustic index values calculated for 600 1min audio files - recorded 
every minute between 20:00-06:00 on the night of 3rd-4th May 2020 in the Lower Derwent 
Valley NNR. Acoustic Complexity Index (ACI) and the Bioacoustic Index (Bio) were calculated 
using the soundecology package in R, with Acoustic Entropy (H) using the seewave package. 
All indices were calculated between 0.2-8 kHz and were centred between 0-1 afterwards. 
Calculation took <5 minutes. The quiet period before midnight is clearly visible, as is the onset 
of the dawn chorus shortly after 03:00. The bottom panel illustrates some of the complexity in 
interpreting index values. A) shows the quiet period, without a strong response from any of the 
indices. B) shows the minimum H value, with very little increase in ACI or Bio values - caused by 
strong wind at low frequencies, C) shows the maximum ACI value, paired with small changes in 
ACI and Bio, caused by heavy rainfall across the frequency range and D) the maximum Bio value, 
with similar increase in ACI but no change in H - caused by bird song. It is worth noting however 
that the sound file at D only contains sound from a single species - Eurasian Skylark Alauda 
arvensis, that has a broadband song, conspicuous vocal mimicry and high temporal variation.

Page 57



6.4. Sampling effort to capture soundscape variability
Generally, it is not necessary to collect data continuously for soundscape analysis. 
However, it is important to be confident that the recordings have captured the naturally 
occurring variation in a soundscape. This should be checked before any further analyses, 
such as through comparisons among sites. As a rule of thumb, indices should be 
calculated from at least 120 hours of recordings from the target period - e.g. if a study 
wished to compare index values from dawn at different seasons, it would be necessary 
to record for 3 hours each morning for 40 days in each of winter, spring, summer, 
and autumn. However, it is worth noting that the 120-hour threshold was estimated 
from data collected in the tropics, and using indices calculated across both the entire 
frequency range and the entire diel cycle. It is likely that the number of hours needed 
to capture biophonic soundscape variability in the UK is considerably less, and that 
measuring indices at narrower time and frequency bins could reduce this still further. 
To be confident that the subsequently derived indices values are still representative 
of the variation in the soundscape would require a more formal assessment of survey 
completeness.

One option for assessing the level of precision with which soundscapes have been 
captured involves assessing reduction in the variance of the cumulative standard error 
of acoustic indices185. Standard errors stabilise when natural variability rather than data 
paucity is driving index variance. Bradfer-Lawrence et al (2019)185 found that variance 
in indices standard errors reached ~10% with 120 hours (five days) of continuous 
recording. Although the quantity of recordings required to reach this 10% threshold will 
vary among systems, standard error variance will follow a similar shape of exponential 
decline with increasing quantity of recordings (TBL pers. obs.). Logistical constraints may 
necessitate deployments of less than 120 hours, but acousticians should strive to ensure 
they have at least passed the modelled inflection point, and recognise that shorter 
deployments result in less comprehensive capture of the soundscape.

The steps to calculate reduction in variance are as follows:

1. Generate acoustic indices values for each recording.

2. Randomly assign the recordings from a single site into groups*. Each group 
comprises recordings equivalent to one hour of deployment time.

3. Calculate the standard error of each index at each site. Standard error is cumulative, 
use progressively larger quantities of recordings by adding data for an additional 
group for each calculation. For example, standard error for the third deployment hour 
is calculated using the index values from the first three groups, for the fourth hour 
with index values from the first four groups, and so on.

4. For each acoustic index, divide each group’s standard error by the maximum value 
across all groups from that site’s recordings1, to give proportions of the maximum.

5. Quantify the reduction in variance with increasing quantities of recordings using 
non-linear regression with a Weibull distribution. The forthcoming ‘AcousticIndices’ 
R package includes functions to automate standard error calculations and the non-
linear modelling.

 
* Or a single site-by-deployment combination if there was more than one deployment at 
a site.
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6.5. Ecological Analysis

6.5.1. Indices to characterise landscapes

Indices have been used in a number of studies to successfully characterise 
soundscapes. What this means in practice is that each soundscape is unique, 
but that soundscapes from similar habitats have enough in common that 
machine-learning algorithms can differentiate them based on index values 
generated from recordings in those habitats. In general, it is a good idea to use 
a suite of acoustic indices to characterise soundscapes in order to represent 
different aspects of the sound present in the recordings. Commonly used 
indices for this purpose include Acoustic Complexity Index177, the Bioacoustic 
Index180, Acoustic Entropy163, Acoustic Evenness/Diversity178 and the number of 
frequency peaks182, although a wide range of others can and perhaps should 
be used186. 

Additionally, the sensitivity of soundscape characterisation can be improved 
by calculating indices over a range of time and frequency bins187. These 
subsets of the entire soundscape are best selected by choosing periods 
and frequencies that are representative of when the target community or 
taxa are likely to have a strong presence in the soundscape - for instance 
around dawn and between 0.5-10 kHz for a study targeting birds. This is 
because soundscapes change across the diel cycle - think of the difference 
in sound between the dawn chorus and the middle of the afternoon, and at 
different frequencies - the insects stridulating at higher frequencies may be 
more different between sites than mammals and birds at lower frequencies. 
Calculating single values across the entire temporal and frequency ranges 
mask these subtle differences, so it is better to generate indices values at 
a range of different frequency and temporal bins, ideally based on prior 
ecological knowledge of the timings and frequencies of species groups 
communication. If taking this approach, ensure that you adjust any parameters 
of the indices as some have default values (NDSI, ADI, BI etc.)

Once acoustic index values have been generated, these values can be used 
in standard ecological analyses - exploratory ordination, classification or 
regression models. Random Forests188 are a common choice as they have no 
formal distributional assumptions and are non-parametric so they can handle 
skewed, as well as categorical data. Random forests are an ensemble learning 
method that can be used for classification or regression and can be used for 
multivariate data.  

These algorithms are ‘trained’ on a subset of labelled data (e.g. a series of index 
values which are labelled as having come from a certain habitat), learning 
what aspects of the data are most characteristic of that particular habitat. 
Having done so, it is then possible to use the algorithm to make predictions 
as to whether a new recording belongs to that habitat or not. In theory, this 
could provide an indication of habitat quality - several studies have shown that 
degraded or secondary forest in the tropics can be distinguished accurately 
from undisturbed primary forest using acoustic indices162,187,189, as well as 
broader land-use types such as woodland and farmland162. In some situations 
acoustic indices have been shown to predict habitat type more accurately 
than species lists, suggesting that soundscape analyses may provide 
complementary ecological information to targeted analyses162. This possibility 
requires further investigation. If exploring this approach in new habitats, 
ecological ground-truthing should be conducted.
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This research also highlights the potential to track habitat changes over time 
through soundscape analysis. For example we might expect the soundscape 
of a rewilding project on farmland would start out with acoustic index values 
similar to neighbouring farmland, but as scrub habitat and then woodland 
develops, index values should grow closer to neighbouring natural habitats. 
This is potentially a cost-effective and efficient way of tracking long-term 
changes in a landscape. 

The potential for this approach is supported by a study demonstrating 
that three acoustic indices - acoustic richness, median amplitude and 
temporal entropy - successfully characterised the difference between islands 
with invasive predators still present, and those in which predators had 
been removed and had recovering populations of Leach’s Storm-petrels 
Oceanodroma leucorhoa190. Elsewhere, acoustic indices have been used to 
assess the impact of construction and drilling at a gas platform development 
in tropical forest113.

6.5.2. Indices as proxies for biodiversity metrics

Early ecoacoustic research investigated the potential for acoustic indices as 
proxies for biodiversity metrics, however a recent review reveals mixed success. 
This approach is heavily grounded in the Acoustic Niche Hypothesis, and relies 
on the idea that a more ‘complete’ soundscape entails more species being 
present. In general, heuristic indices designed to capture this soundscape 
‘completeness’ are modelled against some metric of biodiversity, often species 
richness, derived from traditional survey methods. Simple Spearman’s Rank 
correlations and linear models are often used to do so, although these are 
too simple a method to model what is likely a complex relationship. Under 
this approach, in order to try and eliminate masking sounds from sources not 
relevant to the biodiversity metrics, it is important to only calculate acoustic 
indices at appropriate times and frequency bins187,191,192. 

Overall, whilst some studies have successfully shown a strong relationship 
between acoustic indices and species richness, there is a great deal more 
research needed before we understand the relationship between the number 
and abundance of species present in an area and the emergent soundscape193. 
In particular, the impact of species with song mimicry is poorly understood, as 
is the level at which acoustic indices may saturate - e.g. it may be possible to 
establish differences in the soundscape between one and ten vocalising frogs, 
but not between 100 and 1000. 

In contrast, the relatively simple measure of soundscape saturation has been 
effectively used to measure community turnover in selectively-logged tropical 
forest in Papua New Guinea194. Here, the spectrogram was gridded, and each 
cell was considered to be acoustically active when the amplitude power 
passes a threshold. These measures of soundscape saturation were then used 
to measure the dissimilarity between the different forest types - finding that 
logged forest leads to increasing homogeneity of the soundscape, with a loss 
of characteristic dawn and dusk choruses. This approach (and the conceptually 
similar Acoustic Space Use) could be applied to large restoration projects, 
especially when it is ecologically rational to hypothesise that restoration will 
increase ecological and soundscape diversity whilst unrestored areas will 
remain homogenous.  
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6.5.3. Deep Learning for Soundscape Analysis 

Just as deep neural network models can be used to support automated 
species detection, deep learning methods can be used to learn soundscape 
representations168.  Rather than training a new model from data, numerous 
pre-trained models are now readily shared. It has been shown that a large 
model trained on hundreds of hours of labelled YouTube data (VGGish) can be 
applied to ecological tasks. How does this work? The power of deep learning 
models comes from their many layers - VGGish has 24 layers, for example. 
Typically data is presented to an input layer and predictions read from the 
output layer.  Under this approach the ‘hidden layers’ are inspected and 
the representations learned by the model to make predictions that can be 
adopted as a ‘learned’ representation, akin to a multivariate acoustic index. 
These learned representations have been used to characterise soundscapes, to 
detect anomalous sound events such as gunshots or chainsaws, and to predict 
with a high degree of accuracy the presence or absence of a range of forest 
indicator species in Borneo195. 

Pre-trained models can be further “tuned” with local soundscape recordings 
using self-supervised methods - greatly reducing the human effort in labelling 
data and increasingly the accuracy of the representation. However, as with 
all things there are trade-offs. Learned representations can be very powerful, 
as they can provide detailed representations and are not based on human 
assumptions about potential links between soundscape facets and ecology. 
However traditional approaches are notoriously opaque, making it difficult 
to interpret results. Current research applies methods from visual learning to 
investigate the relationships between these abstract learned representations 
and the spectrogram representations they are trained on, and that are more 
humanly accessible. Current approaches provide potential for monitoring 
change; in the future we may gain insight into ecological significance of this 
change. 

Research in this field is fast-moving and implementation requires strong 
technical skills. However, these advances will likely support accessible, 
interactive interfaces for data exploration in the near future.
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Figure 6.2. Passive acoustic monitoring can be an effective way to monitor wildlife 
on farmland. Credit: Oliver Metcalf
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Appendix 1: An evidence-based quick-start 
guide for ecoacoustics deployment
The programming and deployment of automated acoustic recorders can be confusing to new 
practitioners, with a bewildering array of decisions to make on machine settings and fieldwork 
approaches. Research studies have used a wide variety of methods, with little coordination or 
development of good-practice - the limited guidelines previously available have been scattered 
throughout the literature. 

Below, we set out some recommendations for implementing an ecoacoustics study focussed on 
long-term monitoring and the use of Acoustic Indices. The recommendations are based, where 
possible, on evidence from the scientific literature. The recommendations advise on audio settings 
for the recorders, recording schedules, and how best to deploy detectors in the field spatially and 
temporally. The choices provided will not be optimal for every project, but this quick-start guide 
is intended to advise those who are starting with ecoacoustics, or who are seeking consistency in 
approach. The recommendations are not intended to constrain experienced researchers who fully 
understand the best options for their own field of study.

As part of the evidence gathered for these recommendations, a questionnaire was circulated to 
attendees at the UK Acoustics Network (UKAN+) ecoacoustics symposium held at Manchester 
Metropolitan University on 15-16th June 2022. This asked a series of questions related to the 
parameters of a recommended survey protocol for an ecoacoustics study, focussed on developing 
audio data for analysis with acoustic indices. The favoured choices of the 84 respondents to the 
survey are included below (referred to as ‘UKAN questionnaire’).

Sample Rate
Sample rate is the number of sound samples recorded per second.  It affects the temporal 
resolution of acoustic data, and sets the highest frequency of the sound that will be recorded. The 
sample rate is programmed within the recording device settings.

We recommend using a 48 kHz sample rate

Research evidence
UKAN questionnaire: 55% of respondents selected a sample rate of 44.1/48 kHz for 
ecoacoustic studies.

Within the Global Soundscapes Project database (Darras, 2022), 183 of the 325 projects 
listed used a 48 kHz sample rate.
https://doi.org/10.5281/zenodo.6486836

The Silent Cities project used a 48 kHz sample rate in its global scale study of 
soundscapes during the Covid-19 lockdown.
DOI: 10.17605/OSF.IO/H285U

The most common (37%) sampling rate used in the 35 acoustic index studies reviewed 
by Alcocer et al. (2022) was 44.1 kHz.
https://doi.org/10.1111/brv.12890

Burivalova et al (2017) used a 44 kHz sample rate when using soundscapes to detect the 
effects of human influence on tropical forests.
https://doi.org/10.1111/cobi.12968

For bird surveys, Darras et al. (2018) recommended recording all frequencies in the 
audible range - with a sampling frequency of 44.1 kHz.
DOI: 10.1111/1365-2664.13229
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Rationale
A 48 kHz sample rate will record the full range of human hearing, and be able to capture 
a wide range of biological and environmental sounds in high resolution.

The sample rate you should use for audio files in ecoacoustic studies depends on the 
specific requirements of your study and the types of sounds you are trying to capture. 
In general, a higher sample rate will result in a greater temporal resolution and allow for 
more accurate representation of the original sound. However, higher sample rates also 
result in larger file sizes, which can be an issue with large datasets.

The sample rate needs to be twice the highest frequency of sound that is to be recorded. 
For example, the upper range of human hearing is ~20kHz, so needs a sample rate of 
40kHz to be recorded  (as defined in the Nyquist theorem).  Similarly, lesser horseshoe 
bats have a call at 110 kHz, and so a sample rate of 256 kHz is normally used to ensure 
these calls are captured.

In ecoacoustic studies, it is common to use sample rates in the range of 44.1 kHz to 48 
kHz. These sample rates are sufficient for capturing a wide range of sounds, including 
most vocalizations and other biological sounds. Some studies may require higher sample 
rates if they are focused on capturing very high frequency sounds or if they are trying to 
capture very fine temporal detail. In these cases, sample rates of 96 kHz or higher may be 
necessary.

The large Silent Cities citizen-science project used a 48 kHz sample rate, and the widely 
used BirdNET algorithm for birdsong classification  is designed to work with a 48 kHz 
sample rate.

Most audio recorders have a number of potential sample rate options, with rates such as 
16, 24, 32, 44.1, 48, 64, 96, 128 and 256 being fairly standard.

Sample rate determines the size of audio files, with high sample rates having a 
correspondingly high file size. A mono .wav file at 256 kHz sample rate of 8 seconds 
length may be around 4 MB in size, while a file of the same length at 44.1 kHz might only 
be 640 KB.

High sample rates can be ‘downsampled’ to reduce file size if necessary - the opposite is 
not possible.

Bit depth
The bit depth of an audio file refers to the number of bits used to represent each sample of the 
audio signal. A higher bit depth allows for a greater dynamic range, which means that the audio 
file can capture a wider range of amplitude levels. However, higher bit depths also result in larger 
file sizes.

We recommend using a 16 bit depth encoding

Research evidence
There has been little study of the effects of bit depth on ecoacoustic studies.

Rationale
In ecoacoustic studies, it is common to use bit depths of 16 bits or 24 bits. These bit 
depths are sufficient for capturing a wide range of sound volumes. Higher bit depths, 
especially 32 bit recordings, reduce the potential for ‘clipping’ with loud sounds.

For the majority of automated acoustic recorders, the bit depth is set by the unit’s 
firmware and can not be changed. Hence, no decision on this parameter is normally 
necessary by the user.  The majority of automated units, e.g. Wildlife Acoustics, 
Audiomoth, Frontier Labs and Swift all record 16 bit files. Handheld recorders from 
manufacturers such as Tascam and Zoom can also record at 24 or 32 bit depth, which 
provide a wider amplitude scale.
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File type
There are a number of different file types that can be used for audio files in ecoacoustic studies. 
Some common file types include WAV, AIFF, FLAC, and MP3.

We recommend using .wav files

Research evidence
The meta-analysis of acoustic index studies by Alcocer et al. (2022) revealed that 94% of 
the projects used WAV format audio files.
https://doi.org/10.1111/brv.12890

Heath et al (2021) describe how, with compressed recordings, the signal is altered in 
relation to the level of compression, with higher frequencies and quieter sounds most 
severely altered. Lossless compression should be preferred in ecoacoustic studies,  but 
if data storage is an issue, then MP3 encoding can be used while potentially having 
minimal impact on most acoustic indices.
https://doi.org/10.1002/ece3.8042

For bird surveys, Darras et al. (2018) recommended recording all audible frequencies in 
uncompressed WAV or FLAC audio file format.
https://doi.org/10.1111/1365-2664.13229

Rationale
WAV (Waveform Audio File Format) is a ubiquitous file type that can be produced by 
most recorders, and processed by most software.  Although file sizes can be larger than 
other file types, the files are uncompressed and lossless, preserving all the data from the 
original recording.

FLAC (Free Lossless Audio Codec) files are a lossless compressed format. The file sizes 
often being approximately half of an equivalent WAV file. Some researchers therefore 
use this format to archive recordings, saving space (and cost), while not reducing the 
information held within the audio recording.

AIFF (Audio Interchange File Format) is another lossless file format that is similar to WAV. 
It is also widely supported and is a good choice for preserving the quality of the original 
audio.

MP3 (MPEG Audio Layer 3) is a compressed file format that is widely used for storing 
audio data. It is a lossy format, which means that it removes some of the audio data in 
order to reduce the size of the file. While MP3 files are generally smaller in size compared 
to WAV and AIFF files, they may not be as suitable for preserving the quality of the 
original audio.

Zero-crossing audio files are simple representations of when the recorded audio signal 
crosses the zero line. They can be used to reconstruct a sound wave,  and hence provide 
data on frequency, but not on amplitude.  Zero-crossing audio files are typically created 
by applying a threshold to the original audio signal, such that only those samples that 
exceed the threshold are retained. The file sizes are very small compared to other types.

The choice of file type depends partly on the recorder used. For example, Audiomoths 
record only in WAV format, while Wildlife Acoustics can save files as WAV, a proprietary 
W4V compressed format, and as ZC zero-crossing files. The Frontier Lab’s BAR-LT 
supports WAV and FLAC files.
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File length
Acoustic recorders can be programmed to record file lengths ranging from seconds to hours. The 
choice of recording length normally depends on issues around practical file management and 
how the recorded data will be processed.

We recommend using a 1-minute file length

Research evidence
UKAN questionnaire: 31% of respondents selected a 1 minute file length, with 20% 
selecting 5 minutes.

The 35 acoustic index studies reviewed by Alcocer et al. (2022) used file lengths equal to 
(40%) or shorter than 1 minute (40%).
https://doi.org/10.1111/brv.12890

When manually processing birdsong recordings,  Bayne  et al. (2017) found that shorter 
duration (1 min) files increased detection rates for species and allowed for wider 
coverage of times of day and different dates.
http://bioacoustic.abmi.ca/wp-content/uploads/2017/08/ARUs_and_Human_Listeners.
pdf

A literature review by Minkova et al. (2020) found that a small number of studies have 
contrasted alternative file-length choices, indicating that short duration files (e.g. 15 s–1 
min) are most effective and efficient for detecting species, particularly for species that 
are relatively common. Minkova et al. (2020) chose to use 1 min audio clips.
https://www.dnr.wa.gov/publications/lm_oesf_pac_sp.pdf

For all species considered during the tundra breeding bird survey by Thompson et al. 
(2017), analysis indicated that for most species of birds, a single 10 min survey during 
times and dates of high availability (June, between 0500 hours and 2000 hours) is likely 
sufficient to establish occupancy status. However, in any single 10 min recording, the 
majority of species are detected within the first few minutes; thus shorter duration 
recordings are likely to be more efficient in detecting species occupancy
https://wildlife.onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21285

Cook & Hartley (2018) used two different time-sampling methods to calculate species 
richness and acoustic prevalence of birds, comparing 5 min sections of recordings with 
the first 10 s of each minute to create a composite of 5min duration. The 10 s composite 
samples detected 26% more species and produced improved prevalence indices, 
requiring 60% less listening time to detect as many species as the 5 min sections.
doi.org/10.5751/ACE-01221-130121

Metcalf et al. (2021) compared the results of sampling one-hour of data by using 240 15 s 
samples spread randomly across a survey window, with sampling of four 15 min samples. 
They found that the shorter files, providing a ‘higher temporal resolution’, outperformed 
the less frequent longer files in every metric considered, detecting 50% higher alpha 
diversity, and 10% higher gamma diversity. 
https://doi.org/10.1111/2041-210X.13521

Cifuentes et al (2021) suggest that short recordings sampled throughout the survey 
period accurately represent acoustic patterns, with an optimal schedule of ten 1 minute 
samples per hour.
https://doi.org/10.21068/c2021.v22n01a02

Melo et al. (2021) employed a 2 minute file length (with a single recording per hour), 
and were able to detect a large number of anuran species with an appropriate level of 
sampling effort and temporal scale.
https://doi.org/10.1016/j.ecolind.2021.108305

The review by Sugai (2019) found that for studies with 24 h diel recordings, the most 
commonly used recording lengths were up to 3 min (59%), or between 3-10 min (31.8%). 
https://doi.org/10.1093/biosci/biy147
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Rationale
Analysis of data for ecoacoustic studies has commonly been undertaken using 1 min 
length files, such that this has become a de facto standard: https://research.ecosounds.
org/2019/08/09/analyzing-data-in-one-minute-chunks.html 

This relatively short file length enables a greater range of time periods to be covered 
for the same data volume, aids parallel computation with manageable file sizes, retains 
sufficient detail of vocalisation structures (e.g. birdsong sequences), and can be easily 
viewed in reasonable temporal detail on a standard computer screen. In addition, when 
calculating acoustic indices, this file length seems to achieve a compromise between 
introducing boundary effects from cropping sound sequences into short segments, 
and over-smoothing temporal variation to gross averages. Finally, one minute has been 
shown to be an efficient length for listening by analysts, without attention fading and 
signals being missed.

Files per hour
A number of studies have found that a stratified ‘on-off’ time sampling programme (e.g. recording 
1 minute in every 10), can capture comparable data to continuous recording, with consequent 
benefits in terms of battery life, data storage and processing time. 

We recommend recording 12 files per hour

Research evidence
UKAN questionnaire: 27% of respondents selected 6 files per hour, with 17% selecting 12 
files per hour.

Bradfer-Lawrence et al. (2020) assessed the length of time required to generate stable 
acoustic index values at a location, and concluded that continuous recordings are 
more effective for rapidly capturing soundscape character, while sparse time-sampling 
delayed this process. As a result, their recommendation was to sample continuously to 
minimise the required deployment period.

https://doi.org/10.1111/2041-210X.13254

Pieretti et al. (2015) simulated five different recording schedules from continuous sound 
files: (i) one minute every five; (ii) one minute every 10; (iii) one minute every 20; (iv) 
one minute every 30; and (v) one minute every 60. For each schedule they calculated 
the Acoustic Complexity Index. The 1 min in five schedule closely correlated with the 
soundscape captured by continuous recordings (r>0.90; p<0.01), while providing an 80% 
storage space and battery power reduction compared to the continuous sampling. 
https:///doi.org/10.1111/2041-210X.13254#mee313254-bib-0035

Shaw et al. (2022) investigated the effort required to estimate bird species richness and 
composition in European forests. They compared sampling intensity for 1 min files, 
in intervals from 1-in-3 (n = 20 per hour) to 1-in-60 min (n = 1 per hour).  The highest 
species richness was with recordings at the highest intensity of one every 3 mins.
https://doi.org/10.1002/ece3.9491

The studies in the literature review by Minkova et al. (2020) recorded a daily total of 
recordings ranging from 10-240 min per 24-hour period (equal to 0.4-10 minutes per 
hour). However, the sampling protocol was often influenced by study limitations such as 
availability of personnel, hardware and data storage capacity. Minkova et al. (2020) used 
two sampling densities: four 1 min clips from each hour 0400-1000 , and two 1 min clips 
from each hour 1000-2200.
https://www.dnr.wa.gov/publications/lm_oesf_pac_sp.pdf
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The review by Sugai (2019) found that for studies with 24 h diel recordings, most used 
a single recording per hour (47%), with the remaining studies using 2, 4, or 6 recordings 
per hour.
https://doi.org/10.1093/biosci/biy147

Rationale
In combination with file lengths of one minute, as recommended above, 12 recordings 
per hour provide a 20% time-sampling coverage. This level of sampling effort has been 
shown to adequately capture soundscape characteristics or species directions, while 
balancing data storage and processing requirements.

Daily programme
Detection probability for bird and other taxa normally varies with time of the day, so recording 
times distributed throughout the day will sample the entire community most effectively.

We recommend recording for the full 24 hour cycle

Research evidence
UKAN questionnaire: 67% of respondents selected the full 24 hr daily cycle

Bradfer-Lawrence et al. (2019) found that characteristic diel patterns are important for 
determining differences between habitat types. Acoustic indices may be highly similar 
between habitats at some times of the day, while differing widely at other times. A wide 
range of recording times is therefore useful in characterising habitat types.
https://doi.org/10.1111/2041-210X.13254

The bird study by La & Nudds (2016) found that morning-only acoustic recordings 
underestimated species richness, and that the greatest number of species per unit of 
sampling effort was detected with on-the-hour samples between 07:00 and 12:00, and 
at 21:00.
https://doi.org/10.1002/ecs2.1294

Shaw et al. (2022) investigated the effort to estimate bird species richness and 
composition in European forests. They compared recording in a dawn period (1 hr before 
sunrise), a morning period (1 hr beginning 3 hr after sunrise), and a combined period 
including both day phases. Species richness was significantly higher when including 
both day phases compared to dawn alone, and was slightly higher in the morning 
compared to dawn (yielding 80% of recorded species). However, certain nocturnal/
crepuscular species could only be observed in the dawn period.
https://doi.org/10.1002/ece3.9491 

Thompson et al. (2017) deployed recorders to assess how avian detection at different 
times of day, and dates. In their subarctic tundra sites, without a distinct dawn or dusk, 
most species displayed circadian patterns, with detection peaking at 0800-1200 hours,  
but remaining high through the day for some species. Between 2200 hours and 0500 
hours, detection rates dropped to near zero, signaling a rest period for most species. The 
peak time of detection for most species took place in the late morning (0900–1000hours)
doi/abs/10.1002/jwmg.21285

Sugai et al (2019) reviewed the recording periods for 460 studies that used passive 
acoustic monitoring.  Due to a concentration on bat and anuran studies, sampling effort 
was mostly concentrated during the night. However, soundscape studies, not targeted 
at particular taxa, recorded through more of the diel cycle, with most effort at dawn and 
dusk.
https://doi.org/10.1093/biosci/biy147
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Froidevuax et al. (2014) showed that sampling the full night was essential to fully 
capture the maximum number of bat species in forest habitats - covering the dusk and 
dawn peaks in bat activity only, did not record the rarer species with low detection 
probabilities. 
https://doi.org/10.1002/ece3.1296

Linke et al. (2020) demonstrated that acoustic activity is highly sensitive to diurnal 
variation, with only 25-50% of sound types in tropical freshwaters detectable in any 4 hr 
period. A comprehensive sampling strategy therefore needs to include a 24 hr recording 
schedule to capture soundscape patterns. 
https://doi.org/10.1111/fwb.13227

Rationale
Recording through the  full 24 hour period will capture all time events during the day, 
including the avian dawn and evening choruses, and nocturnal animals. It also allows the 
soundscape to be characterised evenly through the diel cycle.

Recording sound through the 24 hour diel cycle can be important in ecoacoustic studies 
to capture the full range of sounds produced in an ecosystem, and to study the effects 
of diel patterns on sound production. Many ecosystems are characterised by changes in 
the soundscape produced over the course of a day in response to the natural history and 
behaviour of different species. By recording sound over a full diel cycle, it is possible to 
study these effects.

Deployment period
Automated recorders are able to be powered for extended periods, particularly if using extended 
battery packs or even solar power. The storage capacity of SD cards has also expanded to the 
extent that days or weeks of sound data can be recorded on single deployments.

We recommend that deployments should last for a minimum of one week

Research evidence
UKAN questionnaire: 22% of respondents considered that a one week deployment was 
appropriate for ecoacoustic studies, with 20% selecting two weeks.

The 35 acoustic index studies reviewed by Alcocer et al. (2022) recorded for an average 
of 44 days (range 1–282 days).
https://doi.org/10.1111/brv.12890

Bayne et al. (2017) state that, for singing birds, deployment over several days results 
in higher detection and occupancy rates than using a single day. However, there are 
diminishing returns - with fewer benefits from month-long deployments in comparison 
to covering more locations.
http://bioacoustic.abmi.ca/wp-content/uploads/2017/08/ARUs_and_Human_Listeners.
pdf

Bradfer-Lawrence et al. (2019) recommend collecting at least 120 hr of continuous 
recordings per site,  to fully describe the soundscape in tropical habitats. These 
soundscapes are often more complex than those of temperate systems, and so less time 
may be required in (e.g.) European contexts. 
https://doi.org/10.1111/2041-210X.13254

Minkova et al. (2020) studied breeding forest birds and recorded for a 10 day period, 
before extracting four discrete 24 hour periods from this total. 
https://www.dnr.wa.gov/publications/lm_oesf_pac_sp.pdf
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The acoustic bird survey by Franklin et al. (2020) recorded for 15hrs/site and resulted 
in an average of 88% completeness of the assemblage, 73% completeness could be 
achieved with 5hrs of recordings.
https://www.researchgate.net/publication/339665372_Establishing_the_adequacy_of_
recorded_acoustic_surveys_of_forest_bird_assemblages

Shaw et al. (2022) investigated the effort to estimate bird species richness and 
composition in European forests. They compared durations of 1–4 recording days for 
each recorder. Bird richness significantly increased with each added day up to 3 days, 
with no difference from adding the 4th day.
https://doi.org/10.1002/ece3.9491

The bird study by La & Nudds (2016) found that a survey period of at least 3 days was 
required to maximise species richness.
https://doi.org/10.1002/ecs2.1294

Furnas & Bowie (2020) stated the importance of adopting a temporal schedule that 
represents the range of conditions likely to effect detection probabilities (e.g. changes 
in weather, phenology and movement of animals). In most cases, this requires sampling 
over several days, with appropriate environmental covariates being recorded as part of 
the study protocol.
https://doi.org/10.2989/00306525.2020.1788829

Melo et al (2021) considered that species detection in monitoring programs is strongly 
associated with both sampling effort and temporal range of monitoring. Their study 
compared six potential sampling scenarios: single hour/day, five night/full-day, thirty 
night/full-day using recordings of 2 mins every hour. The greatest species richness was 
recorded with the thirty full day scenario.
https://doi.org/10.1016/j.ecolind.2021.108305

Rationale
Automated passive acoustic methods enable long-term deployments that can not 
normally be matched by observers. They thus enable a higher sampling effort and wider 
temporal range of sampling than traditional approaches, and consequently produce 
higher probabilities of species detection.

Number of deployments per year
While many studies focus on particular times of year, such as the spring bird breeding period, 
for long-term ecoacoustics studies there will be considerable value in recording audio data 
throughout the annual cycle.

We recommend that deployments should take place a minimum of four times per year, once 
per season

Research evidence
UKAN questionnaire: 51% of respondents selected 4 deployments per year (one per 
season).

Bradfer-Lawrence et al., (2019) considered that short deployments during distinct 
seasons may be as suitable as a single long deployment (e.g. to total 120+ hours).
https://doi.org/10.1111/2041-210X.13254

Siddagangaiah et al. (2022) studied the annual variation in underwater soundscapes, 
finding a phenology of fish chorusing that changed between seasons, reflecting species 
behaviour. 
https://doi.org/10.1038/s43247-022-00442-5
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Rationale
Species occupancy and vocal activity levels will vary throughout the year, as will the 
overall soundscape of an ecosystem. To adequately capture this annual variation, it is 
recommended that ecoacoustic studies should cover all seasons: summer, autumn, 
winter and spring.

Spatial layout
When using multiple recorders, a decision needs to be made on how to arrange these spatially. 
Random, transect, grid or fractal patterns can be used, or the location of recorders can be selected 
based on target features such as habitat types or nesting locations.

We recommend that recorder locations should be selected based on parameters such as 
habitat type

Research evidence
UKAN questionnaire: 58% of respondents would use a selected/optimised spatial 
distribution of sensors (e.g. by habitat type), with 17% choosing a grid-based 
arrangement.

Wood & Peery (2022) discuss two different sampling frameworks for acoustic studies. 
Recorders may be deployed preferentially in areas known to be important to a 
species, such as nest sites, implying an ‘area of occupancy’ concept of a species range, 
Alternatively, recording locations may be randomly determined without relation to any 
knowledge of species use, e.g. in a survey grid, within a wider ‘extent of occurrence’. 
Preferential sampling requires substantial pre-survey information, but leads to intuitive 
parameter interpretation and greater precision due to its finer spatial scale; while greater 
survey coverage is attainable with random sampling.
https://doi.org/10.1111/ibi.13092 

Piña-Covarrubias et al. (2018) tested how the placement of acoustic sensors could be 
optimized, as an alternative to the use of standard grids. They found that, on hilly terrain, 
selected placements on higher ground could halve the required number of sensors to 
cover an area, compared to a square grid.
https://doi.org/10.1002/rse2.97

In their study on bats, Froidevuax et al. (2014) showed that the three-dimensional 
structure of forests, including all microhabitats, must be sampled to adequately record 
the full species complement of bat communities. 
https://doi.org/10.1002/ece3.1296

Rationale
The spatial layout of recorders in a study will largely depend on the aims of the project. 
Investigations of environmental gradients will promote the use of linear, i.e. transect, 
layouts, while studies examining differences between habitat types will likely employ a 
selected or stratified grid layout.  Projects to determine occupancy of particular habitat 
features, such as amphibian presence in ponds, will clearly make use of closely targeted 
locations. Many studies have used survey designs where detectors are rotated across 
a number of locations to increase geographical coverage.  This reduces comparability 
between sites in terms of the dates when sampling occurs, but can be effective in 
maximising limited hardware resources.
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Spatial density
Unless simultaneous recordings are specifically required across an array of recorders (for the 
purposes of localization), then spacing between units is normally set to prevent any replication of 
sounds between sites. When undertaking species-specific studies, the spatial density of recording 
sites may usefully correspond to typical territory size of the target species.

We recommend that recorder locations should be a minimum of 250m apart

Research evidence
UKAN questionnaire: 30% of respondents selected a 500m separation distance between 
recorders (equal to 4 recorders/km2), with 23% choosing a 250m distance (equal to 16 
recorders/km2).

Minkova  et al. (2020) aimed to evaluate bird habitat use in forest stands of different ages 
and management types. Their preliminary field tests (in Kuehne et al. 2019) showed that 
the effective detection range of their Songmeter units was unlikely to exceed 125m for 
their species of interest, and so they spaced  sampling locations  ≥250m apart. 
https://www.dnr.wa.gov/publications/lm_oesf_pac_sp.pdf

The Yip et al. (2017) study on bird sounds confirmed that, for all species calls and 
broadcast tones, detection probability declined with increasing distance and decreasing 
sound amplitude, and was higher in open vegetation than in closed vegetation.

Furnas & Bowie (2020) state the recommendation, following traditional point 
counts, that independent sampling locations at least 250m apart should be used for 
autonomous sound recorders. This separation distance will address the potential for 
double counting and spatial autocorrelation, with their resulting biases on results and 
precision.
https://doi.org/10.2989/00306525.2020.1788829ttps://doi.org/10.2989/00306525.2020.1
788829

Rationale
For coverage of a site, the aim is normally to sample across the range of the habitats 
and species of interest, with recorders placed to limit overlap of detection radii so that 
counts are independent. The effective radius of most recorders is in the region of 50m, 
so a minimum separation distance of at least 100m should be used. As a recommended 
standard, a larger 250m spacing between recorder locations would provide 16 sampling 
locations/km2. This is dense enough to provide a good level of survey data, and is also 
likely to be relevant to the territory sizes of many species of interest within ecological 
assessments. 
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Taxa Region Title Authors and link

Amphibians  USA
Amphibian Monitoring Protocol 
(Version 2.0)

National Park Service, Great Lakes Inventory and Monitoring Network
https://www.nps.gov/im/glkn/amphibians.htm

Bats USA
Range-wide Indiana bat & 
Northern long-eared bat survey 
guidelines.

 U.S. Fish and Wildlife Service. (2022).
https://www.fws.gov/library/collections/range-wide-indiana-bat-and-
northern-long-eared-bat-survey-guidelines

Bats USA
A Plan for the North American Bat 
Monitoring Program (NABat)

USDA (2015)
https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs208.pdf

Bats USA 

Guidance for conducting 
acoustic surveys for bats: Version 
1 detector deployment, file 
processing and database version

 National Park Service
https://irma.nps.gov/DataStore/Reference/Profile/2231984

Bats UK

Designing effective survey and 
sampling protocols for passive 
acoustic monitoring as part of the 
national bat monitoring

Newson, S.E., Boughey, K.L., Robinson, R.A. & Gillings, S. 2021. JNCC Report 
No. 688, JNCC, Peterborough, ISSN 0963-8091.
https://hub.jncc.gov.uk/assets/4cc324dc-1ad8-446e-acdd-a656348025b3

Bats Scotland
Bats and onshore wind turbines 
- survey, assessment and 
mitigation

NatureScot, 2021
https://www.nature.scot/doc/bats-and-onshore-wind-turbines-survey-
assessment-and-mitigation

Bats UK
Bat Surveys for Professional 
Ecologists: Good Practice 
Guidelines

Collins, J. (ed.) (2016). 3rd edition. The Bat Conservation Trust, London. ISBN-
13 978-1-872745-96-1
https://www.bats.org.uk/resources/guidance-for-professionals/bat-surveys-
for-professional-ecologists-good-practice-guidelines-3rd-edition

Bats UK
Guidelines for passive acoustics 
surveys of bats in woodland

Bat Conservation Trust
https://www.bats.org.uk/our-work/national-bat-monitoring-programme/
passive-acoustic-surveys/guidelines-for-passive-acoustic-surveys-of-bats-in-
woodland

Birds Canada 
Species detection survey 
protocols: Forest bird surveys

Saskatchewan Ministry of Environment. 2014. Forest Birds Survey Protocol. 
Fish and Wildlife Branch Technical Report No. 2014-10.0. 3211 Albert Street, 
Regina, Saskatchewan.
http://www.environment.gov.sk.ca/Default.aspx?DN=bcaf2087-feef-4e7e-
acbf-e788a0734e71

Birds New 
Zealand

Protocols for the inventory and 
monitoring of populations of the 
endangered Australasian bittern 
(Botaurus poiciloptilus) in New 
Zealand

O’Donnell, C., and Williams, E., New Zealand Department of Conservation. 
2015.
https://www.researchgate.net/publication/275465977_Protocols_for_
the_inventory_and_monitoring_of_populations_of_the_endangered_
Australasian_bittern_in_New_Zealand

Birds UK
Bird Survey Guidelines: Passive 
audio recording

Bird Survey & Assessment Steering Group. (2022). Bird Survey Guidelines for 
assessing ecological impacts, v.0.1.7.
https://birdsurveyguidelines.org/803-2/

Birds Canada

How to Most Effectively Use 
Autonomous Recording Units 
When Data are Processed by 
Human Listeners

Bayne, E., Knaggs, M.,  and Sólymos, P. Bioacoustic Unit, Bayne Lab at the 
University of Alberta & Alberta Biodiversity Monitoring Institute. 2017
http://bioacoustic.abmi.ca/wp-content/uploads/2017/08/ARUs_and_
Human_Listeners.pdf

Birds UK
Bird Bioacoustic Surveys – 
Developing a Standard Protocol

Abrahams, C. inpractice the Bulletin of the Chartered Institute of Ecology 
and Environmental Management. December 2018.
https://www.researchgate.net/publication/329443381_Bird_Bioacoustic_
Surveys_-_Developing_a_Standard_Protocol

Appendix 2: A table of acoustic monitoring 
guidance documents from around the world
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Taxa Region Title Authors and link

Birds Canada
Terrestrial ABMI Autonomous 
Recording  Unit (ARU) and 
Remote Camera Trap  Protocols

Alberta Biodiversity Monitoring Institute. 2021.
https://www.abmi.ca/home/publications/551-600/599

Cetaceans USA

Baseline Long-term Passive 
Acoustic Monitoring of Baleen 
and Sperm Whales and Offshore 
Wind Development

Appendix I of: Van Parijs, S. M., Baker, K., Carduner, J., Daly, J., Davis, 
G. E., Esch, C., … Staaterman, E. (2021). NOAA and BOEM Minimum 
Recommendations for Use of Passive Acoustic Listening Systems in Offshore 
Wind Energy Development Monitoring and Mitigation Programs. Frontiers in 
Marine Science, 8, 1575.
https://www.frontiersin.org/articles/10.3389/fmars.2021.760840/full

Cetaceans Global
Position Statement 3: Passive 
Acoustic Monitoring

Marine Mammal Observer Association, 2013
https://www.mmo-association.org/mmoa-activities/position-
statements?id=111

Cetaceans Scotland

Use of Static Passive Acoustic 
Monitoring (PAM) for monitoring 
cetaceans at Marine Renewable 
Energy Installations (MREIs) for 
Marine Scotland

Embling, C. B., Wilson, B., Benjamins, S., Pikesley, S., Thompson, P., Graham, I., 
Cheney, B., Brookes, K.L., Godley, B.J. & Witt, M. J.
https://tethys.pnnl.gov/sites/default/files/publications/emblingetal.pdf

Cetaceans New 
Zealand

Report of the Marine Mammal 
Observer/Passive Acoustic 
Monitoring Requirements 
Technical Working Group

DOC (Ed) 2016. Marine Species and Threats, Department of Conservation, 
Wellington, New Zealand. 47 p.
https://www.doc.govt.nz/globalassets/documents/conservation/marine-
and-coastal/seismic-surveys-code-of-conduct/twg-reports-2016/01-scr-
mmo-pam-reqs.pdf

Devices Canada
Autonomous Recording Unit 
Deployment Protocol: SM2, SM3, 
and SM4 Models of Song Meters

Lankau, H., Bioacoustic Unit, Bayne Lab at the University of Alberta & Alberta 
Biodiversity Monitoring Institute. 2017
http://bioacoustic.abmi.ca/wp-content/uploads/2018/01/
DeploymentProtocol_e.pdf

Devices Canada
SongMeter (SM3) Maintenance 
Protocol

Bioacoustic Unit, Bayne Lab at the University of Alberta & Alberta 
Biodiversity Monitoring Institute. 2016
https://www.wildtrax.ca/dam/jcr:9a5ad9ac-c684-4712-a811-74f882acfd5b/
BU_2019_SM3MaintenanceProtocol.pdf

Devices Australia
Deployment manual for solar 
powered acoustic sensors

The Australian Acoustic Observatory | A2O.
https://acousticobservatory.org/deployment-information/

Fish Northeast 
Atlantic

ICES Survey Protocols – Manual 
for Acoustic Surveys Coordinated 
under ICES Working Group on 
Acoustic and Egg Surveys for 
Small Pelagic Fish

Doray, M., Boyra, G., and van der Kooij, J. (Eds.). 2021. 1st Edition. ICES 
Techniques in Marine Environmental Sciences Vol. 64.100 pp.
https://doi. org/10.17895/ices.pub.7462

Whole 
Soundscape  Norway

Management relevant 
applications of acoustic 
monitoring for Norwegian nature 
– The Sound of Norway

Sethi, S. S., Fossøy, F., Cretois, B. & Rosten, C. M. 2021.. NINA Report 2064. 
Norwegian Institute for Nature Research.
https://brage.nina.no/nina-xmlui/handle/11250/2832294

Whole 
soundscape UK

Bioacoustics for Agri-
Environment Monitoring

Excerpt from: Developing technologies for agri-environment monitoring 
Developing approaches to agri-environment monitoring (M&E Baseline/
Programme Development) - LM04108 CEH Project reference: 7379 Date 
22/02/2021 Roy, D.B., Abrahams, C., August, T., Christelow, J., Gerard, F., 
Howell, K., Logie, M., McCracken, M., Pallet, D., Pocock, M., Read, D.S. & 
Staley, J.
https://randd.defra.gov.uk/ProjectDetails?ProjectId=20551

Whole 
Soundscapes Global

Silent·Cities: A participatory 
monitoring programme of an 
exceptional modification of 
urban soundscapes

Samuel Challéat, Amandine Gasc, Nicolas Farrugia, Jérémy Froidevaux
https://osf.io/h285u/

Whole 
Soundscapes Global

Passive acoustic monitoring in 
ecology and conservation

Ella Browning, Rory Gibb, Paul Glover-Kapfer & Kate E. Jones. 2017. WWF 
Conservation Technology Series 1(2). WWF-UK, Woking, United Kingdom.
https://www.wwf.org.uk/sites/default/files/2019-04/Acousticmonitoring-
WWF-guidelines.pdf

Whole 
Soundscapes UK

The potential use of acoustic 
indices for biodiversity 
monitoring  at long-term 
ecological research (LTER) sites

Andrews, C. and Dick, J. 2021. UK Centre for Ecology & Hydrology
https://nora.nerc.ac.uk/id/eprint/531301/1/N531301CR.pdf
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Appendix 3: R code for false-colour plots
# Kaleidoscope False Colour Plot
# Carlos Abrahams 2022-12-23
library(tidyverse)
library(scales)

# Example dataset #######
# Generate example data for hourly samples over five days
set.seed(123)
ai_data <- tibble(
  ACI = runif(120, min = 150, max = 200),
  BI = runif(120, min = 50, max = 100),
  NDSI = runif(120, min = -1, max = 1),
  ai_dtime = seq(ymd_hms(‘2018-08-06 00:00:00’),
                 ymd_hms(‘2018-08-10 23:59:00’),
                 by = ‘1 hour’)
  )

# Extract year_day and hour from ai_dtime POSIX
ai_data <- ai_data %>%
  mutate(ai_date = yday(ai_dtime),
         ai_time = hour(ai_dtime))

# Rescale all Acoustic Index scores to 0-1 for RGB plotting #######
ai_data <- ai_data %>%
  mutate(
    ACInorm = rescale(ACI),
    BInorm = rescale(BI),
    NDSInorm = rescale(NDSI)
  )

# Plot false-colour raster #######
ggplot(ai_data, aes(x = ai_date, y = ai_time)) +
  geom_raster(fill = rgb(
    red = ai_data$ACInorm,
    green = ai_data$BInorm,
    blue = ai_data$NDSInorm
  )) +
  labs(
    x = “Year Day”,
    y = “Time”,
    title = “False-colour plot of acoustic indices”,
    subtitle = “ACI = Red, BI = Green, NDSI = Blue”
  )
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